Département de Mathématiques Programme Sciences de la Nature

Département de
Mathématiques
Programme Sciences de la Nature
PLAN DE COURS
201-NYA-05
Calcul différentiel
Code : 00UN
Durée : 75 heures
Pondération : 3-2-3
Unités : 2 2/3
Session : Automne 2009
Professeurs : Nicolas Beauchemin, Mathieu Guindon, Vito Longo, Hugues Massé, Emmanuel Montini,
Julie Picard, Denis Provost, Jean-François Rochefort, André Sabourin .
Plan de cours 201-NYA-05 2
I. OBJECTIF
ÉNONCÉ DE LA COMPÉTENCE:
Appliquer les méthodes du calcul différentiel à l’étude de fonctions et
à la résolution de problèmes.
ÉLÉMENTS DE LA COMPÉTENCE:
1. Caractériser une fonction à partir de son expression.
Reconnaître et décrire les caractéristiques d’une fonction
représentée sous forme d’expression symbolique ou sous forme
graphique.
2. Analyser une fonction à partir de son expression mathématique
ou de son graphique à l'aide de la notion de limite.
Déterminer si une fonction a une limite, est continue, est
dérivable, en un point et sur un intervalle.
3. Analyser la continuité d'une fonction en un point et sur son
domaine.
Déterminer si une fonction a une limite, est continue, est
dérivable, en un point et sur un intervalle.
4. Analyser une fonction à partir de son expression ou de son
graphique à l'aide de la notion de dérivée.
Déterminer si une fonction a une limite, est continue, est
dérivable, en un point et sur un intervalle.
Appliquer les règles et les techniques de dérivation.
Résoudre des problèmes d’optimisation et de taux de variation.
5. Tracer le graphique d'une fonction algébrique ou transcendante.
Utiliser la dérivée et les notions connexes pour analyser les
variations d’une fonction et tracer son graphique.
6. Résoudre des problèmes concrets en sciences.
Résoudre des problèmes d’optimisation et de taux de variation.
7. Développer une intégrale indéfinie par la méthode de substitution.
8. Appliquer les méthodes de preuve dans la démonstration de
différentes propositions portant sur les notions de base ou se
rattachant au calcul différentiel.
II. STANDARD
CONTEXTE DE RÉALISATION:
1. À l'occasion de questions théoriques et de problèmes
d'application, individuellement ou en équipe.
2. À l'occasion de résolution d'exercices.
3. À l'occasion de temps de lecture en classe.
4. À l'occasion de séances de travaux pratiques à l'aide du
logiciel Maple.
5. Attitude : Rigueur intellectuelle présente dans les preuves de
théorèmes et la justification des étapes d’une solution.
CRITÈRES DE PERFORMANCE:
1.1 Utilisation du vocabulaire et de la notation appropriée.
1.2 Rigueur dans la démarche.
1.3 Recherche du domaine d’une fonction quelconque.
1.4 Définition de fonctions composées, injectives et réciproques.
1.5 Application et représentation graphique d’une fonction
réciproque.
1.6 Définition et représentation graphique des fonctions
trigonométriques réciproques.
1.7 Étude des signes d’une fonction polynomiale.
1.8 Définition de relation implicite et de courbes paramétriques.
1.9 Résolution d’équations comprenant différents types de
fonctions.
2.1 Utilisation du vocabulaire et de la notation appropriée.
2.2 Rigueur dans la démarche.
2.3 Définition intuitive de la limite.
2.4 Représentation graphique de la limite.
2.5 Détermination de la limite à partir d’un graphique.
2.6 Calcul des différents types de limite et justification à l’aide des
propriétés.
2.7 Explication en termes d’influences opposés et traitement de
différents cas d’indétermination.
Plan de cours 201-NYA-05 3
3.1 Utilisation du vocabulaire et de la notation appropriée.
3.2 Rigueur dans la démarche.
3.3 Formulation juste de la conclusion.
3.4 Définition de la continuité en un point et sur un intervalle.
3.5 Recherche et représentation graphique des différents types de
discontinuité.
3.6 Analyse de la continuité en un point à partir du graphique et de
l’expression d’une fonction.
3.7 Analyse de la continuité d’une fonction sur son domaine en
localisant les points de discontinuité.
4.1 Utilisation du vocabulaire et de la notation appropriée.
4.2 Rigueur dans la démarche.
4.3 Interprétation, représentation graphique et application des notions
de taux de variation moyen et de taux de variation instantané.
4.4 Distinction entre la dérivée d’une fonction en un point et de la
fonction dérivée, de même que leurs différentes notations.
4.5 Détermination à l’aide de la définition, interprétation et
représentation graphique de la dérivée en un point.
4.6 Détermination de la dérivée d’une fonction quelconque en utilisant
les règles de dérivation.
4.7 Application de la dérivée aux relations implicites.
5.1 Utilisation du vocabulaire et de la notation appropriée.
5.2 Rigueur dans la démarche.
5.3 Analyse d’une fonction à partir de la dérivée première et de la
dérivée seconde, et ce à partir de leurs graphiques.
5.4 Recherche du graphique d’une fonction en l’induisant à partir du
graphique de sa dérivée première ou de sa dérivée seconde, et vice
versa.
5.5 Transposition des résultats de l’analyse sur le graphique.
5.6 Identification des asymptotes, des valeurs critiques et des points
d’intersection avec les axes.
5.7 Précision et minutie dans le tracé.
5.8 Respect des échelles.
6.1 Choix d’une bonne stratégie.
6.2 Rigueur dans la démarche.
6.3 Identification des variables et du modèle mathématique.
6.4 Mise en équation.
6.5 Vérification des résultats.
7.1 Utilisation du vocabulaire et de la notation appropriée.
7.2 Rigueur dans la démarche.
7.3 Calcul et représentation graphique de la différentielle.
7.4 Utilisation juste de la différentielle.
7.5 Identification des formules de base et des propriétés.
7.6 Identification des propriétés
7.7 Identification de la substitution.
7.8 Résolution d’une intégrale indéfinie en utilisation les formules de
base et la méthode de substitution.
7.9 Vérification des résultats.
7.10 Justification des étapes.
8.1 Identification des hypothèses et de la conclusion.
8.2 Choix d’une bonne stratégie de preuve.
8.3 Justification des différentes étapes.
8.4 Rigueur dans la démarche.
8.5 Vérification des résultats.
8.6 Utilisation de la notation et du vocabulaire appropriés se
rattachant à des notions de base.
8.7 Définition et applications des opérations se rattachant à des
notions de base.
8.8 Démonstrations de différentes propositions portant sur des
notions de base.
Plan de cours 201-NYA-05 4
III. MÉTHODOLOGIE
Le cours sera constitué d'exposés du professeur, suivis d'exercices faits
individuellement ou en «équipe» de 3 ou 4 étudiants. Les exposés seront
ouverts aux questions des étudiants et permettront ainsi un échange
possible et une meilleure interaction entre le professeur et les étudiants.
Un minimum de 2 heures en classe seront accordées pour l’utilisation de
Maple.
Le volume obligatoire sera l'instrument de base pour le cours. La
proportion des cours théoriques -vs- pratiques est 3-2-3, le troisième
nombre étant le travail à la maison.
IV. ÉVALUATION
ÉVALUATION FORMATIVE
L’évaluation formative peut se faire à l’occasion des:
rappels fréquents des définitions sous forme de questions où l’étudiant
répond immédiatement par écrit. La correction est immédiate.
tests d’auto-évaluations corrigés en classe.
discussions de problèmes type en classe.
ou par d’autres moyens jugés pertinents par l’enseignant.
ÉVALUATION SOMMATIVE (intra-sessionnel)
Il y aura trois tests comptant entre 60 % et 65 % de la note finale. Le
premier test peut se faire en deux parties (deux dates différentes). Les
TIC compteront (logiciel de calcul symbolique) entre 5 % et 10 % de la
note finale. Il est possible de faire des mini-tests et/ou devoirs comptant
entre 0% et 5%. Note : Un test ne peut compter pour plus de 30% de la
note finale.
ÉVALUATION SOMMATIVE (épreuve finale)
L’épreuve finale pour ce cours sera un examen écrit cumulatif et commun
à tous les groupes durant la période d’examen et comptant pour 30% de
la note finale.
V. EXIGENCES LINGUISTIQUES
Toute démarche de formation doit être liée à la capacité de
communiquer. Ainsi le fait de bien parler et de bien écrire permet de
mieux communiquer et par conséquent de mieux gérer, clarifier et
organiser nos connaissances. Cela est vrai dans tous les domaines du
savoir et particulièrement en mathématiques, compte tenu de ses liens
avec une multitude de disciplines. De plus, la maîtrise des structures
mathématiques amène la maîtrise des structures françaises et
inversement.
Comme professeurs de mathématiques, nous devons, dans les limites
de nos compétences et de nos responsabilités, nous assurer que les
élèves utilisent correctement la langue française lors d'interventions
orales ou écrites dans les communications mathématiques.
De plus, aux exigences propres à la langue française s'ajoutent des
exigences propres aux mathématiques elles-mêmes en tant que
langage. Pour ce faire, nous allons privilégier les objectifs suivants:
L’élève utilisera les termes appropriés dans toutes ses démarches;
L’élève présentera ses solutions et ses travaux en respectant la
syntaxe mathématique (à l'intérieur des limites usuelles
concernant les abus de langage mathématique);
L’élève devra décrire, présenter ou expliquer correctement une
solution sans laisser place à l'interprétation;
L’élève présentera ses travaux de telle sorte qu'il soit possible de
suivre facilement son raisonnement. L'élève aura une démarche
logique, claire, complète et suffisante;
L’élève tiendra compte de ces mêmes exigences ainsi que des
exigences orthographiques lors de la rédaction des travaux écrits.
Pour atteindre ce double objectif, l’élève pourrait être pénalisé pour
toute lacune langagière qui entrave la communication mathématique.
Plan de cours 201-NYA-05 5
VI. EXIGENCES PARTICULIÈRES
Il est de la responsabilité de l'étudiant absent à un cours de rattraper
son retard.
Le professeur se conforme à la politique qui apparaît au guide de
l'étudiant en ce qui a trait au plagiat et à la fraude.
Un étudiant absent à un test pourra le reprendre, sur présentation de
motifs jugés valables par le professeur, à la date fixée par celui-ci. Il
est de la responsabilité de l'étudiant de contacter le professeur dans
les délais fixés par le collège.
La calculatrice ne sera pas permise lors des tests.
Le cellulaire ne sera pas toléré en classe.
La présence aux cours (Extrait de la PIEA)
La politique affirme que l'évaluation des apprentissages porte
uniquement sur l'atteinte des compétences visées : la présence ou
l'absence de l'étudiant au cours ne peut donc être reflétée par un bonus
ou une pénalité s'appliquant à la note décernée. Cette modalité
d'évaluation sommative ne signifie pas toutefois que l'étudiant peut
décider selon son bon vouloir d'assister ou non aux cours. La
participation active de l'étudiant aux différentes activités d'apprentissage
réalisées en classe est un des facteurs importants permettant l'acquisition
progressive de la compétence visée et d'augmenter les chances de
réussite : les exposés du professeur, les discussions en groupe, les
explications et les exemples donnés oralement, les échanges sur les
productions des autres étudiants, les évaluations formatives, etc., font
partie intégrante de la démarche d'apprentissage prévue pour être menée
en classe et non selon un modèle de formation à distance..
L'étudiant qui n'aurait pas participé sans justification valable à au moins
80 % des activités d'apprentissage prévues en classe peut se voir refuser
le droit de se présenter aux épreuves d'évaluation sommative ultérieures.
Certains objectifs terminaux ne peuvent être atteints sans la participation
à toutes les activités d'apprentissage prévues : dans ce cas, le plan de
cours en fait une mention explicite et précise les modalités de contrôle
des présences, les conditions de rattrapage lorsque l'absence est
justifiée, les conséquences quand l'absence est injustifiée.
Le professeur n'est pas tenu, dans ses heures de disponibilité, d'aider
l'étudiant à compenser le retard engendré par des absences injustifiées
à ses cours.
En cas d'absence prolongée (plus de cinq jours ouvrables consécutifs),
l'étudiant ou quelqu'un qui le représente communique avec l'API.
L'étudiant se présente, dès son retour au collège, chez l'API avec une
pièce justificative et rencontre ensuite chacun de ses professeurs pour
évaluer la somme de travail requise pour compenser le retard encouru.
1 / 9 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !