(X1, X2, . . . , Xd)P(X1,...,Xd)
(Rd,B(Rd)) PX1⊗ ··· ⊗ PXd
(X1, X2, . . . , Xd)Rr1, . . . , Rrd
∀(t1, . . . , td)∈Rr1× ··· × Rrd, ϕ(X1,...,Xd)(t1, . . . , td) = ϕX1(t1)···ϕXd(td)
r1=··· =rd= 1
F(X1,...,Xd)(t1, . . . , td) = FX1(t1)···FXd(td)
ϕXiFXiXi
U V
[0,1] X=√−2 log Vcos(2πU)Y=√−2 log Vsin(2πU)
{Xn}nF
RnXnRn:= Pn
j=1 {Xj>Xn}{Rn}n
P(Rn=k) = 1
n∀k∈ {1,2, . . . , n}.
(Ω,F,P){Ti}i∈N
Cn=σ[
p>n
TpC∞=\
n∈NCn.
C∞
{Xi}i∈N
Xi: (Ω,F)→(Ei,Ei)
Ti=σ(Xi) := {X−1
i(A) : A∈ Ei} F
{Xn}n
{Xn}n
{Xn}nn→ ∞
A:= {ω∈Ω : limnXn(ω)} ∈ C∞
♦
{Ti}i∈NC∞
A∈ C∞
P(A)∈ {0,1}.
C∞
A:= {Ani.s.}∈A∞An=σ(An) = {∅, An, Ac
n,Ω} {An}n
P(A)∈ {0,1}
{An}nP(lim sup An) = 0 PnP(An)<∞