f:FR
g:ER
f
(X, d)f:XX f
xn+1 =f(xn)x0
(X, d) Λ f:X×Λ
X f λ Λ
xX f(x, .)f λ Λ
x(λ)x:λ7→ x(λ)
(Fn)n
nNFn+1 FnFn6=
(X, d)
(Xi)iIXi
Q
iI
Xi
B(0,1)
E E0BE0
E0BE0
AY a A fn:AZ
nNlim
xA
xA
fn(x)ln
(fn)nf A
lim
xa
xA
flim
n→∞ln
lim
n→∞ lim
xa
xA
fn(x) = lim
xa
xA
lim
n→∞fn(x)
fn:XR
nNfn
xXlim
n→∞fn(x) = f(x)
xf(x)
nNxX fn(x)fn+1(x)
iv)nNxX fn(x)fn+1(x)
fnf
(X, d) (Y, d0)
f:XY
(X, d) (Y, d0)
AX f :AY
g:XY g/A =f
ωf=ωg
AC(X, Y )xX
A(x)
C(X, Y )
C(X, Y )
C(X, R)
C(X, C)
fA f A
Rp:ER+p(x+y)p(x) + p(y)x, y E
p(λx)λp(x)(x, λ)E×R
+
f:FR
xF f(x)p(x)
e
f:ER
xE, e
f(x)p(x),e
f|F=f
6=AB6=
H
ui:EF i I
iI ui
xEsup
iI
kui(x)kF<+
(ui)iI
u:EF
ρ > 0B(0,2ρ)u(B(0,1))
B(0,2ρ)u(B(0,1)) B(0, ρ)
u(B(0,1))
u:EF
u1
u:EF
E×F
H H
xH!p(x)C d(x, C) = d(x, p(x)) kxp(x)k= min
yCkxyk
p(x)p(x)CyC Re(< xp(x), yp(x)>
0
xp(x)
C=FHp(x)
p(x)F x p(x)F
H
Φ : HH0
x7→ y< x, y >
ΦH H 0
HlH0xC
yC
Re(a(x, y x)) Re(l(xy))
xC
1
2a(x, x)Re(l(x)) = min
yC(1
2a(y, y)Re(l(y)))
u:EF
u0=tu:F0E0
l7→ u0(l) = lu
HuL(H)
λSp(u)λSp(u)
FHFu
uu
Im(u)=Ker(u)
Sp(u)RSp(u)[m, M]
M=max
kxk=1
< u(x), x > m =min
kxk=1
< u(x), x >
Sp(u)
Spres(u)
Hu:HH
(λn)n∈{0..N+}
(µn)n∈{0..N}N+NN
N+N
Sp(u)− {0}={λnn∈ {0..N+}} ∪ {µnn∈ {0..N}}
kuk=max(λ0,µ0)
λSp(u)− {0}Eλ=Ker(uλId)λ6=λ0
EλEλ0
H=Ker u ⊕ ⊕
n∈{0..N+}
Eλn⊕ ⊕
n∈{0..N}
Eµn
a < b f : [a, b]F
]a, b[g: [a, b]R+]a, b[
t]a, b[kf0(t)k≤ g0(t)
kf(a)f(b)k≤ g(b)g(a)
UE fn:UE
x0U(fn(x0))n
aUr(a)>0B(a, r(a)) U(fn)n
B(a, r(a))
aU(fn)nB(a, r(a)) g= lim f0
n
f= lim fnf U f0=g
f:UF
Ckk1aU df(a)
f(a)f|V:VW
Ck
E, F, G U E ×F f :UG
Ckk1 (a, b)U f(a, b)=0
f(a, b)L(F, G)U0
(a, b)U V a E g :VF
Ck
(x, y)U0, f(x, y)=0xV y =g(x)
Rpf:URnCk
k1f(0) = 0 f0
ψ CkRn0 0
ψf(x1...xn)=(x1...xp,0...0)
Rnf:URqCkk1
f(0) = 0 f0
ϕ CkRn0 0
fϕf(x1...xn) = (x1...xq,0...0)
f(t0, x0)U
u(t0) = x0
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !