P∞
n=1
a(n)
ns
s= 1
∞
X
n=1
a(n)
ns=ϕ(s)∞
X
n=1
b(n)
n1−s
(b(n))
∞
X
n=0
b(n)
z2+ (2n+ 1)2π2
(c(n))
∞
X
n=1
c(n)1
ez/n + 1
ζ
(a(n)) = (1,1,1,1, ...) (b(n)) = (1,1,1,1, ...) (c(n)) = (1,0,0,0, ...)
P∞
n=1
(−1)n−1
ns
(a(n)) = (1,−1,1,−1, ...) (b(n)) = (1,0,1,0, ...) (c(n)) = (1,0,0,0, ...)