Chapitre 4 Calcul numérique et puissances
Objectifs :
• Effectuer des calculs utilisant des nombres relatifs et des nombres en écriture fractionnaire. (socle)
• Effectuer des calculs utilisant des puissances. (socle)
• Résoudre des problèmes sur les fractions, les puissances...
I. Les ensembles de nombres
1) les nombres entiers
On distingue deux ensembles de nombres entiers :
* les nombres entiers naturels :
exemples : 0 ; 1 ; 2 ; 3 ; …. ; 52 ; …. ; 149 ; …
* les nombres entiers relatifs, composés des nombres entiers naturels et de leurs opposés :
exemples : … ; -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; …
2) les nombres décimaux
Ces nombres ont une écriture décimale qui a un nombre fini de chiffres après la virgule.
Ils s'écrivent comme le quotient d'un nombre entier relatif par une puissance de 10.
Exemples :
...
Les nombres entiers sont des nombres décimaux particuliers.
3) les nombres rationnels
Ce sont les quotients de deux nombres entiers relatifs.
Exemples :
sont des nombres rationnels mais
est un nombre décimal alors que
n'est pas un nombre décimal (son écriture décimale ne se termine pas).
Les nombres décimaux sont des nombres rationnels mais attention les nombres rationnels ne sont
pas tous des nombres décimaux.
4) les nombres irrationnels
Ce sont les nombres qui ne sont pas rationnels autrement dit : des nombres qui ne peuvent pas
s'écrire comme le quotient de deux nombres entiers relatifs.
Exemples : pi ; le nombre d'or (voir HDA) ;
...
II. Calcul numérique : rappels
1) Priorités des opérations (voir vidéo c4v1)
2) Calculs avec des nombres relatifs (voir vidéo c4v2)
3) Calculs avec des nombres en écriture fractionnaire (voir vidéo c4v3)
III. Puissances entières d'un nombre relatif
Définitions :
Soient a un nombre relatif et n un nombre entier naturel (c'est à dire positif).
• pour n ≥ 2 :
(se lit : « a exposant n » ou « a puissance n »)
n facteurs
•
(si a ≠ 0) : en particulier :
(avec n ≠ 0)
• Lorsque a ≠ 0,