E F E F
u:EF
• ∀(x, y)E2u(x+y) = u(x) + u(y)
• ∀λRxE u(λx) = λu(x)
u:EF(λ, µ)R2(x, y)E2
u(λx +µy) = λu(x) + µu(y)
u k
X
i=1
λiei!=
k
X
i=1
λiu(ei)
u:R2R3u(x, y) = (2x3y, 4x+y, x+ 2y)
u:R2R3u(x, y) = (2x3,4+y, x+2y)
u(2x, 2y)6= 2u(x, y)
u:M3(R)→ M3(R)u(M) = AM
A∈ M3(R)
u:M3(R)→ M3(R)u(M) = M2
(M+N)26=M2+N2
E f :ER3f(un) = (u0, u8, u35)
E CR R u:EE u(f) = f0
E[0; 1] u:ER
u(f) = Z1
0
f(t)dt
u:EF E F
L(E, F )E
F
u:EE
L(E)E
E GL(E)
u:EF Ker(u) = {xE|
u(x) = 0}
u:EF Ker(u)
E
(x, y)Ker(u)2u(x) = u(y) = 0 u(x+y) = u(x)+u(y) = 0
x+yKer(u)xKer(u)u(λx) = λu(x) = 0 λx Ker(u)
u x E u(x) = u(x+0) = u(x)+u(0)
u(0) = u(x)u(x) = 0
uR3(x, y, z)7→ (xy+z, 3x
2y+ 5z, x3z) (x, y, z)
xy+z= 0
3x2y+ 5z= 0
x3z= 0
2L1L2=L3
(3z, 2z, z)zRu
1R3(3,2,1)
Ker(u) = {0}
u
(x, y)E2u(x) = u(y)u(xy) = u(x)u(y) = 0 xyKer(u)
xy= 0 x=y u
0u0
E Ker(u)
u:EF Im(u) = {yF| ∃xE, u(x) =
y}
u:EF u
Im(u) = F
F
u(0) = 0 yIm(u)
λRy=u(x)u(λx) = λu(x) = λy λy Im(u)y y0
u y =u(x)y0=u(x0)u(x+x0) = y+y0
u:EF E F (e1, . . . , en)E
Im(u) = V ect(u(e1), . . . , u(en))
u(e1), . . . , u(en)Im(u)
V ect(u(e1), . . . , u(en)) Im(u)yIm(u)y=u(x) (e1, . . . , en)
E x =
i=n
X
i=1
λieiy=u(x) = u i=n
X
i=1
λiei!=
i=n
X
i=1
λiu(ei)
yV ect(e1, . . . , en)
(u(e1), . . . , u(en)) Im(u)
R2R3u(x, y) = (2xy, x + 2y, 2x+y)
(a, b, c)Im(u)
2xy=a
x+ 2y=b
2x+y=c
a=c
Im(u) = {(a, b, a)|a, b R2}=V ect((1,0,1); (0,1,0))
R2
(1,0) (0,1) u(1,0) = (2,1,2) u(0,1) = (1,2,1)
Im(u) = V ect((2,1,2); (1,2,1))
(e1, e2, . . . , en)E n (f1, f2, . . . , fp)
F p u :EF
x E u(x) = u i=n
X
i=1
xiei!xix
u(x) =
i=n
X
i=1
xiu(ei) =
i=n
X
i=1
xi
j=p
X
j=1
ai,j ej=
j=p
X
j=1 i=n
X
i=1
ai,j xi!ejai,j
i ej(f1, . . . , fp)
u:EF
B= (e1, e2, . . . , en)EB0= (f1, . . . , fp)F
uB B0M∈ Mp,n(R)i
u(ei)B0u(ej) =
n
X
i=1
λifiMi,j =λi
u:R3R2u(x, y, z) = (4x3x+z, 2x+y5z)u
M=43 1
2 1 5
u E BE
MatB(u)uB B
X=
x1
xp
BxE u(X) =
y1
yn
B0u(X) = MX M u B B0
x=
p
X
i=1
xieiM u(ei) =
n
X
j=1
Mjifj
u(X) =
p
X
i=1
xi
n
X
j=1
Mjifj=
n
X
j=1 p
X
i=1
xiMji!fjj
MX
p
X
i=1
xiMji
u∈ L(E, F )λRM u B B0
λu λM
(u, v)∈ L(E, F )2M N u +v M +N
u∈ L(E, F )v∈ L(F, G)M N
vu NM
u(X) = MX v(X) = NX λu(X) = λMX u(X) + v(X) = MX +
NX = (M+N)X v u(X) = v(MX) = NMX
u∈ L(R3,R2) (x, y, z)7→ (xy, 2x+z)v∈ L(R2,R3)
(x, y)7→ (x+y, 3xy, x+ 2y)
M=11 0
201N=
1 1
31
1 2
NM =
31 1
131
3 1 2
vu(x, y, z) = (3xy+z, x 3yz, 3x+y+ 2z)
M u1
M1
u u1XE u1(u(X)) = X
u1Y1Y2E X1
X2u X1+X2Y1+Y2u1(Y1+Y2) = X1+Y2
N u1
u1u=uu1=id
NM =MN =I
I N =M1
u:EF λ u
xE u(x) = λx
u λ
uR2u(x, y) = (2x+y, 3x2y)
u M =2 1
321
u(1,1) 1
u(1,3) u(1,3) = (1,3) = (1,3)
((1,1); (1,3)) R2
u
M0=1 0
01
u
u∈ L(E)BE
u
E u
B= (e1, . . . , en)B0= (f1, . . . , fn)
EB B0P= (pi,j )pi,j
i fjB
u∈ L(E)A
A0B B0A0=P1AP
((1,1); (1,3)) P=1 1
13P1=3
2
1
2
1
21
2P1MP =
1 0
01
P MP 1
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !