Exercices : quantité de mouvement et principe d`inertie

Terminale S www.sciencesphysiques.info
Principe d’inertie et quantité de mouvement : corrections d’exercices Page 1 / 3
Principe dÊinertie et quantité de mouvement
Corrections d’exercices
Exercice 4 page 174
A l’instant t
0
= 0 : x(t
0
) = 1 et y(t
0
) = 3 donc
)3 ; 1(OG
0
Par définition :
i 5j
dt
)3(d
i
dt
)1t5(d
dt
OGd
v
G
=+
+
== donc )0 ; 5(v
G
La vitesse est constante vectoriellement donc le mouvement est rectiligne (même direction et même sens) et
uniforme (même valeur de la vitesse).
Exercice 8 page 175
Nous étudierons le système constitué des deux patineurs dans le référentiel terrestre.
Les deux patineurs sont, à l’instant initial, immobiles dans le référentiel terrestre. La quantité de mouvement
du système qu’ils constituent est donc nulle :
A l’instant t0 :
0v.mv.mppp
B
B
A
A
BAsystème
=+=+= car 0v et 0v
BA
==
Le système des deux patineurs est isolé puisqu’il n’y a pas d’intervention extérieure. Les forces avec
lesquelles les deux patineurs se repoussent sont intérieures au système. On a donc, à chaque instant :
0ctep
système
== d’où 0)t(p)t(p
BA
=+ et )t(p )t(p
BA
=
0)t(p)t(p
BA
=+
0)t(v.m)t(v.m
B
B
A
A=+
)t(v
m
m
)t(v
A
B
A
B×
=
Les vecteurs vitesse des deux patineurs sont donc de même direction mais de sens opposés. La valeur de la
vitesse v
A
est 4,0 m.s
-1
et la valeur de la vitesse v
B
est 2,5 m.s
-1
.
Exercice 11 page 175
Le système considéré est le système des deux poissons. Celui-ci est isolé donc sa quantité de mouvement est
constante au cours du temps. Notons 1 le gros poisson et 2 le petit :
Avant la rencontre :
12
2
1
1
21système
v.m 4v.mv.mppp
=+=+=
puisque m
1
= 4m
2
et v
2
= 0
Après la rencontre : 'v.m 5'v).mm('p
11
21système =+=
Le système étant isolé :
système
système
'pp
=
'v.m 5v.m 4
11 =
11
v
5
4
'v =
Le gros poisson poursuit donc sa route dans le même sens et la même direction mais avec une vitesse qui
diminue de 4/5 : v
1
’ = 4 / 5 × 5,0 = 4,0 km.h
-1
Terminale S www.sciencesphysiques.info
Principe d’inertie et quantité de mouvement : corrections d’exercices Page 2 / 3
Exercice 14 page 177
Dans le référentiel terrestre, le mouvement du skieur est rectiligne uniforme d’après les données de l’énoncé.
Sa vitesse est donc vectoriellement constante (direction, sens et norme).
D’après le principe d’inertie (ou 1
ère
loi de Newton), si la vitesse vectorielle du centre de gravi d’un
système est constante alors la somme des forces extérieures appliquées à ce système est nulle :
ctev
G
=
0F
ext
=
Le système est donc isolé
Bilan des forces exercées sur le skieur
le poids, exercé par le Terre, vertical vers le bas, de norme P = mg.
la réaction de la piste sur les skis, perpendiculaire à la piste puisque les frottements des skis sur la neige
sont négligeables, orientée vers le haut, de norme inconnue.
la force de frottements de l’air, parallèle à la pente, opposée au mouvement, de norme inconnue.
Schémas
D’après la première loi de Newton (principe d’inertie), si le skieur est= en mouvement rectiligne uniforme,
alors la somme vectorielle des forces extérieures qui lui sont appliquées est nulle : 0fRP =++
Cette relation est vraie vectoriellement donc reste vraie avec les coordonnées des vecteurs sur chaque axe :
P
x
+ R
x
+ f
x
= 0 avec P
x
= P sin
α
, f
x
= – f et R
x
= 0
P
y
+ R
y
+ f
y
= 0 avec P
y
= P cos
α
, f
y
= 0 et R
y
= R
Rappel de géométrie : si deux droites font entre elles un angle α, on retrouve le même angle α entre deux
perpendiculaires à ces droites (il s’agit d’une rotation de 90°). On retrouve donc le même angle α entre le
vecteur poids et l’axe vertical (G ; y) qu’entre la direction de la piste et l’horizontale.
D’après l’équation sur l’axe (G ; x) : P sin
α
– f = 0 donc f = mg sin
α
= 235 N
La force de frottements exercée par l’air est donc de direction « celle du mouvement », de sens « opposé au
mouvement » et de norme 235 N.
Exercice 21 page 179
Etant donné qu’il y a trois cas à traiter dans l’exercice, je traiterai un cas général puis l’appliquerai ensuite à
chaque question. Le référentiel d’étude est le référentiel terrestre.
Avant l’accrochage, la quantité de mouvement du système {motrice + wagon} est la somme des
quantités de mouvement de la motrice et du wagon :
w
w
m
m
wmconvoi
v.mv.mppp +=+=
Après l’accrochage, la quantité de mouvement du convoi est :
convoi
wm
convoi
v).mm(p +=
P
f
R
P
f
R
y
x
G
α
α
Représentation des forces appliquées
au skieur (sans souci d’échelle) Ajout d’un repère orthonormé (G ; x ; y)
pour exprimer simplement les vecteurs force
Terminale S www.sciencesphysiques.info
Principe d’inertie et quantité de mouvement : corrections d’exercices Page 3 / 3
Or, le système constitué de la motrice et du wagon étant isolé, la quantité de mouvement du convoi est
constante. C’est donc la même avant et après l’accrochage :
convoi
wm
w
w
m
m
convoi
v).mm(v.mv.mp +=+= d’où
wm
w
w
m
m
convoi
mm v.mv.m
v+
+
=
1
er
cas – Avant l’accrochage, le wagon est immobile :
h/km 3,30,4
120
100
mm v.m
v
wm
mm
convoi
=×=
+
=
2ème cas – Avant l’accrochage, le wagon se déplace à la vitesse de 2,0 km/h dans le sens de la motrice :
h/km 7,3
120 0,2200,4100
mm v.mv.m
v
wm
wwmm
convoi
=
×+×
=
+
+
=
3ème cas – Avant l’accrochage, le wagon se déplace à la vitesse de 2,0 km/h dans le sens opposé à la motrice :
h/km 0,3
120 0,2200,4100
mm v.mv.m
v
wm
wwmm
convoi
=
××
=
+
+
=
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !