Paris 7
PH 443

THEORIE CLASSIQUE DES CHAMPS
EXAMEN, t0= samedi 14 septembre , 8 h 30
t= 3 heures
Seront appr´eci´es : les dessins illustratifs et les commentaires pertinents, mais brefs, en particulier sur
le caract`ere pr´evisible (a posteriori !) de certains esultats, et les ethodes de v´erification.
Les erreurs de dimension sont impardonnables.
I – TRANSFORMATION SP´
ECIALE DE LORENTZ (1 pt)
Luke, inerte, a une vitesse ~
βpar rapport `a Leia toute aussi inerte. Ils sont tomb´es d’accord pour
utiliser des coordonn´ees en configuration standard, Leia choisissant son axe ˆxselon la vitesse de Luke.
Soit un ´ev´enement quelconque. Quelles sont les relations entre ses coordonn´ees (t, x, y, z) pour Leia et
(t0, x0, y0, z0) pour Luke ?
II UN PARADOXE (2 pts)
Luke est dans son vaisseau, `a la d´erive, qui se dirige vers son hangar d’entretien `a l’entr´ee duquel se
tient Leia. Le hangar a bien entendu la longueur du vaisseau lorsque celui-ci s’y trouve au repos.
Leia ferme la porte d’entr´ee du hangar lorsque l’arri`ere du vaisseau franchit cette entr´ee, en se disant
que, comme chacun sait, la relativit´e “contracte les longueurs”, et donc que l’avant du vaisseau ne
touche pas encore le fond du hangar. Mais pour Luke aussi, la relativit´e contracte les longueurs,
en particulier celle du hangar, et donc la longueur de son vaisseau exc`ede cette derni`ere (avec les
cons´equences catastrophiques que l’on peut imaginer).
Discutez et d´ebrouillez cette contradiction au moyen d’un graphe d’espace-temps, dans le rep`ere de
Leia par exemple, sur lequel vous repr´esenterez les lignes d’univers de l’entr´ee et du fond du hangar,
de l’avant et de l’arri`ere du vaisseau, et les ´ev´enements que vous jugez notables.
III – “CIN ´
EMATIQUE” (4,5 pts)
1. Rappelez la d´efinition de la quadri-impulsion d’une particule de masse mdont la ligne d’univers est
donn´ee.
2. Quelle est l’utilit´e de cette notion ?
3. Rappelez les identit´es remarquables que v´erifient l’´energie eet l’impulsion ~p d’une particule.
4. Qu’impliquent ces identit´es dans le cas d’une particule qui a la propri´et´e |~p|=e?
5. Leia observe un photon d’´energie edont l’impulsion fait un angle ϑpar rapport `a son axe ˆx. Luke
observe ce mˆeme photon.
i) Quelle est, pour Luke, l’´energie e0de ce mˆeme photon ?
ii ) Toujours pour Luke, calculer le cosinus de l’angle ϑ0de l’impulsion du photon avec l’axe ˆx0.
iii ) Discuter les cas ϑ= 0, ϑ=π/2, et leurs limites `a basse vitesse.
6. Leia souhaite r´ealiser la r´eaction de photoproduction du pion γ+pp+π0sur une cible de protons
immobiles (de l’hydrog`ene liquide par exemple). La masse du proton est M938,3 Mev et celle du π0,
m135,0 Mev. Calculer l’´energie que doit avoir le photon au seuil de production du π0.
IV – TRANSFORMATION DU CHAMP ´
ELECTROMAGN´
ETIQUE (2,5 pts)
1. Rappeler la efinition du tenseur Fµν du champ ´electromagn´etique en termes du quadripotentiel.
2. En d´eduire les expressions des composantes Fµν en fonction des composantes des champs ´electrique
et magn´etique.
3. En d´eduire les relations donnant les composantes des champs ´electrique et magn´etique, observ´es par
Luke en un ´ev´enement, en fonction des composantes observ´ees par Leia au eme ´ev´enement.
4. Dans une zone o`u, pour Leia, ne r`egne qu’un champ ´electrique
Euniforme et constant, parall`ele `a la
vitesse de Luke, quels sont les champs ´electrique et magn´etique observ´es par Luke ?
2Champs classiques, PH443 Paris 7
V – MOUVEMENT D’UNE CHARGE ´
ELECTRIQUE (1,5 pts)
1. Rappelez les ´equations du mouvement d’une particule charg´ee dans un champ ´electromagn´etique Fµν .
2. Dans la zone de champ ´electrique uniforme et constant pr´ecit´ee, Leia observe une particule de charge q,
masse m.
i) Calculez les valeurs des composantes de la quadri-acc´el´eration de cette particule lorsque sa vitesse ~v
est parall`ele au champ ´electrique.
ii ) En d´eduire la valeur de l’acc´el´eration propre de la charge.
iii ) Commentaires ?
VI – CHAMP CR ´
E´
E PAR UNE CHARGE (3 pts)
Une charge positive se meut librement `a la vitesse de 150 000 km s1, puis est soudainement r´efl´echie
dans la direction oppos´ee avec la mˆeme vitesse. A l’instant 6 ×109s apr`es la r´eflexion, repr´esenter
qualitativement :
i) la zone o`u le champ ´electromagn´etique est du type rayonnement,
ii ) les lignes de champ ´electrique,
iii ) les lignes de champ magn´etique.
VII – RAYONNEMENT (2 pts)
Soit, dans la vie d’une charge ponctuelle acc´el´er´ee, un ´ev´enement o`u sa vitesse est nulle.
1. Rappelez les expressions des champs ´electrique et magn´etique rayonn´es par cet ´ev´enement, en pr´ecisant
soigneusement la signification des symboles utilis´es dans vos formules.
2. En d´eduire le vecteur de Poynting du champ.
3. En eduire la puissance (ou taux de Larmor R) rayonn´ee par cet ´ev´enement.
VIII – R´
EFLEXION D’UNE CHARGE PAR UN CHAMP ´
ELECTRIQUE (3,5 pts)
Une particule de masse m, charge q, est abandonn´ee sans vitesse initiale dans une zone de champ
´electrique
Euniforme et constant. Sans ˆetre oblig´e de faire simple, on peut n´eanmoins choisir l’axe ˆx
selon ce champ.
1. Que pouvez-vous dire tout d’abord du mouvement de la charge, sans aucun calcul, mais avec des
arguments convaincants ?
2. Ecrire les ´equations du mouvement des composantes p0et p1de la quadri-impulsion de la charge.
3. En d´eduire que la quantit´e p0qEx est une constante du mouvement dont vous calculerez la valeur
si on choisit l’´ev´enement abandon comme origine.
4. Reste `a int´egrer effectivement les ´equations du mouvement. Pour cela, on peut trouver commode de
commencer par poser : adf
=qE/m et ϕdf
= arg th v.
i) Exprimer p0et p1en fonction de ϕ.
ii ) A l’aide des ´equations du mouvement, d´eterminer dϕ/dτ puis, par int´egration, ϕ(τ) en choisissant
encore l’´ev´enement abandon comme origine du temps propre τde la charge.
iii ) En d´eduire les expressions de dt/dτ et dx/dτ en fonctions de τpuis, par int´egration, les expressions
de at(τ) et ax(τ).
iv ) En eduire l’expression de ax(t). Commentaires ?
v) D´eterminer l’expression de en fonction du rapport p0/m de l’´energie et de la masse de la
particule.
5. Une particule charg´ee est dirig´ee, sous incidence normale, vers un syst`eme de deux grilles conductrices,
parall`eles, auxquelles est appliqu´ee une diff´erence de potentiel constante.
i) A quelles conditions (signe de la d.d.p., distance entre les grilles et valeur de la d.d.p.) la particule
est-elle efl´echie par ce syst`eme ?
ii ) Quelle est, dans ces conditions, la profondeur de p´en´etration de la particule dans la zone entre les
deux grilles ?
iii ) Quelle est la dur´ee propre du s´ejour de la particule entre les deux grilles ?
iv ) Quelle est l’´energie totale rayonn´ee au cours de la r´eflexion ?
1 / 2 100%