un nombre relatif est un nombre précédé d`un

NOMBRES RELATIFS
I.Les nombres relatifs
Définition : un nombre relatif est un nombre précédé d’un signe + ou d’un signe - .
S’il est précédé d’un signe + c’est un nombre positif, ces nombres sont supérieurs ou égaux à 0
S’il est précédé d’un signe – c’est un nombre négatif, ces nombres sont inférieurs ou égaux à 0
Exemple : « il fait 5°C » - 5 est un nombre relatif négatif.
« il fait + 20°C » +20 est un nombre relatif positif.
Remarque : le nombre zéro est le seul nombre à être positif et négatif.
II. Repérer des nombres relatifs
1) Sur une droite graduée
Définition : une droite graduée à une origine, un sens, une direction et une graduation .
Exemple :
Vocabulaire :
L’abscisse d’un point c’est l’unique nombre relatif qui correspond au point sur la droite
Exemple : L’abscisse de M est 2,5 .
Notation : On peut écrire une abscisse de trois façons : M( 2,5) ,
L’abscisse de M est 2,5
xA = 2,5
Vocabulaire :
La distance à zéro d’un point est la distance entre le point et l’origine de la droite O.
Exemple : La distance à zéro du point M est : OM = 2,5 .
Définition : deux nombres relatifs qui ont la même distance à zéro mais des signes contraires sont
des nombres opposés.
Exemple : -2 et +2 sont opposés.
2) Dans le plan
Définitions :
un repère du plan est constitué de deux droites graduées se coupant et de même origine.
La droite horizontale est l’axe des abscisses.
La droite verticale est l’axe des ordonnées.
Un repère est orthogonal quand les deux axes se coupent perpendiculairement
Remarque : les deux axes n’ont pas forcément la même unité de longueur.
Exemple :
Propriété : dans un repère n’importe quel point est repéré par deux nombres relatifs :
- le premier est son abscisse
- le deuxième est son ordonnée
Définition : l’abscisse et l’ordonnée d’un point forment ses coordonnées
Exemple :
A ( -2 ; +1 )
III. Comparer des nombres relatifs.
Règle 1 : un nombre négatif est toujours plus petit qu’un nombre positif
Exemple : -4 < 12
Règle 2 : si 2 nombres sont positifs le plus grand est celui qui a la plus grande distance à zéro
Exemple : + 15, 6 < + 45, 3
Règle 3 : si 2 nombres sont négatifs le plus grand est celui qui a la plus petite distance à zéro
Exemple : -7,1 < - 3
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !