Corrigé TD : principes et lois fondamentales
7. Observation de la quille d’un bateau
La figure est la suivante :
Si un rayon issu du point le plus bas (point
P) de la quille est en réflexion totale alors
tous les rayons issus des autres points le
sont aus
si, l’angle d’incidence étant plus
grand pour des points de la quille proches
de la surface.
La position de l’œil est importante, lorsque l’œil
est le plus proche du bateau il intercepte les
rayons qui atteignent la surface sous l’incidence
la plus faible, c’est la position extrême qu’il faut
envisager. Dans ce cas, si un rayon issu du point
P est en réflexion totale, ils le sont tous (quelle
que soit la position de l’œil), c’est le cas qu’il
faut envisager.
Le rayon qui est tangent à la surface de la quille atteint la surface sous l’incidence
i. L’angle
i
est tel
que
tan
2
=
d
i
h
. Il y a réflexion totale si
sin 1=
ni
, soit encore si
. Le sinus peut encore
s’écrire sous la forme
1/ 2
2
2
sin 22
dd
ih


= +




, la condition attendue se traduit finalement par
2
1
2
=
hn
d
. L’application numérique conduit à
0, 44
h
d=
.
8. Lame à faces parallèles
La représentation graphique de la marche
d’un rayon est la suivante :
Les lois de Descartes de la réfraction en I
et en K se traduisent par
sin sinin r=
et
sin sinnr i
=
. Les angles
i
et
i
sont
égaux.
Dans le triangle rectangle IJK, le sinus de
l’angle
ir
en K est donné par la
relation
( )
IJ
sin IK
ir
−= =
δ
.
δ
représente la longueur de l’hypoténuse IK de ce triangle. D’autre part, dans le triangle ILK, le
cosinus de l’angle
r
en I est donné par
cos d
r=δ
. De ces deux relations nous déduisons
( )
sin cosir r
d
−=
, ce qui s’écrit encore
sin( ) sin cos sin cos
(sin ) (sin )
cos cos cos
ir r i i i
d di di
r r nr
∆= = − = −
,
soit
2
22
1 sin
sin 1 sin
i
di
ni

∆= −



. Il encore possible de calculer la distance
qui se déduit de la
distance
par
sin i
∆=∆
, d’où
2
22
1 sin
1sin
i
d
ni

∆= −



. Sous incidence normale,
0∆=
le rayon
émergent n’est pas décalé mais un point source situé très loin apparaît plus proche d’une distance
1n
d
n
∆=
. L’application numérique conduit à
1, 3 m m
∆=
pour une lame de
4 mm
d’épaisseur (ce
qui correspond à une vitre ordinaire).
9. Réflexion totale
Il faut éclairer le prisme par l’une de ses faces « droites ». L’incidence étant normale, il n’y a aucune
déviation lorsque les rayons pénètrent à l’intérieur du prisme. Il s’agit d’exploiter le phénomène de
réflexion totale sur l’hypoténuse du prisme. Dans ce cas, celle-ci se comporte comme un miroir,
l’angle de réflexion est égal à l’angle d’incidence.
Le faisceau tombe sur cette face avec une
incidence de 45°, la déviation du faisceau est
alors de
2 45×°
soit 90°. Il faut vérifier
numériquement la validité de la réflexion totale,
l’angle d’incidence limite correspondant à une
réflexion totale est
°<°=
=458,41
5,1
1
arcsin
max
i
. Il y a réflexion
totale.
Un miroir demande à être régulièrement métallisé ce qui n’est pas le cas pour un prisme de verre.
10. Prisme à réflexion totale
Comme l’analyse le suggère, il faut dessiner la
marche d’un rayon lumineux et dégager les
propriétés de symétrie du système. Le plan
bissecteur du prisme (
/2A
), est le plan de symétrie.
Le rayon incident vertical et le rayon émergent
horizontal se croisent en un point de cet axe. La
symétrie du système impose
rr
=
. La somme des
angles dans le triangle OJK vaut
π
, l’angle en O vaut
A
π−
, la relation suivante s’en déduit
2Ar=
.
Dans le triangle
O JK
, la somme des angles conduit à
222
rr
π
++=π
, soit
24
rAπ
= =
.
11. Principe d’un réfractomètre
Le faisceau de lumière parallèle qui tombe sur la face d’entrée du cube sous l’incidence
i
est réfracté
à l’intérieur de celui-ci sous l’angle
r
, avec
sin siniN r=
. Certains rayons de ce faisceau atteignent la
base de la goutte, leur incidence est notée
β
. Pour des valeurs de cet angle supérieures à la valeur de
l’angle correspondant à la réflexion totale,
β
, toute la lumière est réfléchie et la goutte apparaît
particulièrement lumineuse.
Lorsque l’incidence diminue, l’angle
β
augmente, donc la goutte apparaît bien
lumineuse en dessous d’un angle
i
correspondant à la valeur limite
β=β
, les
rayons n’étant alors plus réfractés à travers
la goutte. L’angle limite
β
se déduit de la
loi de la réfraction par
sin n
N
β=
.
Cet angle est relié à l’angle de réfraction par 2
r
π
β+ =
 . Finalement l’angle limite lu permet de
trouver
n
grâce à la relation
( )
sin sin cos arcsini N r N nN

= = 

.
12. Dièdre réfléchissant
1. L’image du point source
A
est notée
1
A
, celle-ci
est le symétrique de
A
par rapport au plan du miroir
M. L’angle
11
AOA = θ
vaut
22 6
αα π
+ =α=
. Le point
1
A
est l’objet pour le miroir
M
, son image est le
point
2
A
, symétrique du point
1
A
par rapport au
point au plan du miroir
M
. L’angle
12
A OA
vaut
23
2
α

−α − = α


, l’angle
22
AOA = θ
s’en déduit
22
AOA 3 2 =− α= α
.
2. L’analyse faite dans la question précédente se généralise aux autres images, l’angle
AOA
nn
= θ
s’en
déduit,
( )
1
AOA 1 n
nn
+
=−α
. Pour qu’un point i
A soit réfléchi par un miroir il faut qu’il soit situé
« devant » celui-ci. Cela signifie que les points d’indice impair doivent être situés au-dessus du plan
MM
′′
, et les points d’indice pair doivent être situés en dessous du plan
MM
. Pour l’exercice
considéré, le point
6
A
ne peut plus avoir d’image par le miroir M car il est situé au dessus du plan
MM, donc derrière ce miroir. Cette analyse graphique se traduit par la condition
n
θ ≤π
.
Dans le cas de l’exercice le point A présente six
images par le miroir M. Il faut suivre la même
démarche pour établir le nombre d’images du point
A par le miroir
M
. Celles-ci sont symétriques des
précédentes par le plan
6
AA
. Six images sont alors
visibles. Le nombre total d’images visibles est de
douze, nombre que l’on peut ramener à onze en
considérant que les points
6
A
et 6
A sont
confondus. Le faisceau de lumière réfléchie par un
miroir provenant d’un point i
A s’obtient à partir
de la source virtuelle correspondante. Les faisceaux produits par les sources
1
A
et 6
A
sont
représentées sur les figures suivantes :
Le faisceau le plus étroit est celui produit par la source 6
A ou 6
A
, il faut placer l’œil entre le point A
et le bord du miroir M, dans la zone commune aux deux faisceaux.
Les photos suivantes représentent la situation pour un angle de 90° (photo de gauche) et pour un
angle de 60° (photo de droite).
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !