19 Rang d’une matrice et systèmes linéaires
19.1 Rang d’une matrice
Définition 1 : Soit
(
)
np
A M
∈ Κ
. On appelle rang de A le rang de la famille de vecteurs de K
n
constituée par les colonnes de A.
Théorème 1 : 1) Toutes les applications linéaires représentées par la même matrice A ont le
même rang.
2) Deux matrices ont le même rang si et seulement si elles représentent la même application
linéaire relativement à des bases différentes.
3) Deux matrices A et B de
(
)
M
np
Κont le même rang si et seulement si il existe une matrice P
de
(
)
GL
p
Κ et une matrice Q de
(
)
GL
n
Κ
telles que B =Q
-1
AP.
Remarque : Il découle de ce qui précède qu’on ne change pas le rang en multi^liant une
matrice à gauche ou à droite par une matrice inversible.
Proposition 1 : A
(
)
M
np
Κ,
(
)
(
)
AA
t
rgrg =.
19.2 Opérations conservant le rang
19.2.1 Opérations élémentaires
Soit
(
)
AM
np
Κ.
Les opérations suivantes conservent le rang : en effet elles correspondent à des multiplications
à gauche par des matrices inversibles.
L L
i j
: Echange de deux lignes : cela revient à multiplier la matrice A à gauche par la
matrice L
ij
obtenue en échangeant les lignes i et j de la matrice I
n
; L I
ij n
2
=.
L kL
i i
: Multiplication d’une ligne par un scalaire non nul : Cela revient à multiplier la
matrice A à gauche par la matrice
(
)
M k
i
obtenue en multipliant par k la ligne i de la
matrice I
n
;
( )
M k M kI
i i n
1
=
.
L L L
i i j
+
: Addition d’une ligne à une autre : cela revient à multiplier la matrice A à
gauche par la matrice A
ij
obtenue en ajoutant la ligne j à la ligne i de la matrice I
n
;
(
)
(
)
M A M A I
i ij j ij n
− =
1 1 .
En combinant ces opérations, on peut donc remplacer une ligne par une combinaison linéaire
de toutes les lignes, à condition que le coefficient de la ligne elle-même soit non nul.
On ne peut faire simultanément plusieurs opérations que si l’on est sûr que l’on pourrait les
faire successivement.
Les opérations élémentaires peuvent être faites aussi bien sur les lignes que sur les colonnes,
ce qui correspond à des multiplications à droite par des matrices inversibles.
19.2.2 Méthode du pivot de Gauss
Soit
(
)
[ ]
[ ]
[ ]
[ ]
A a
ij i n j p
=
∈ ∈1 1, , ,
une matrice non nulle de
(
)
M
np
Κ.
1) Si tous les coefficients de la première colonne sont nuls, on effectue une permutation des
colonnes pour obtenir une première colonne non nulle ;
2) On choisit dans la première colonne un élément a
i1
non nul (appelé pivot), et on échange
les lignes 1 et i. On obtient ainsi une matrice
(
)
=
A a
ij
dont le coefficient
a
11
est non nul.
3) On effectue l’opération
L L a
aL
i i i
← −
1
11 1
; on obtient alors une nouvelle matrice sous la
forme :
′ ′
a a a
p11 12 1
0
0
B
.
4) Si la matrice
B
est nulle , c’est terminé, sinon on répète l’opération sur la matrice
B
(attention, si une permutations de colonnes est nécessaire, elle doit porter sur la matrice
tout entière).
5) On répète les opérations précédentes autant de fois que nécessaire. Si, au bout de
r
itérations, la matrice constituée des
n – r
dernières lignes et
p – r
dernières colonnes est
nulle, alors le rang de la matrice est
r
. (Si
r = n
il ne reste pas de ligne nulle, et si
r
=
p
il
ne reste pas de colonne nulle).
19.2.3 Calcul de l’inverse d’une matrice carrée inversible
Dans le cas où
Ai est une matrice carrée inversible, la matrice triangulaire
T
n
obtenue par la
méthode du pivot a ses coefficients diagonaux non nuls.
En répétant la méthode du pivot en commençant par la dernière ligne, puis en divisant chaque
ligne par son pivot, on obtient la matrice
I
n
. On a donc multiplié la matrice
A
par une
matrice inversible
Q
pour obtenir
I
n
:
QA I
n
=
. La matrice
Q
est donc l’inverse de
A
.
Pour calculer
Q
il suffit d’appliquer les mêmes opérations sur les lignes de
I
n
.
19.3 Equations linéaires
19.3.1 Systèmes d’équations linéaires
Rappel : Soit
E
et
F
deux K-espaces vectoriels. On appelle équation linéaire une équation de
la forme
f(x) = y (1)
f
est une application linéaire de
E
dans
F
, et
y
un élément de
F
, appelé second membre.
L’équation
f
(
x
) = 0 (2)
est appelée équation sans second membre associée à (1) .
Théorème 3 : L’ensemble des solutions de l’équation (1) est soit vide, soit l’ensemble décrit
par la somme d’une solution particulière x
0
et d’une solution quelconque de l’équation sans
second membre, c’est à dire un élément de Kerf.
Une équation linéaire de K
p
dans K
n
s’écrit sous forme matricielle AX = Y, avec A
np
(K).
Si rgA = n : f est surjective, le système possède des solutions pour tout Y .
Si rgA < n, le second membre doit vérifier es conditions de compatibilité.
Si rgA = p, f est injective, la solution (si elle existe !) est unique.
Si rgA < p, il y a une infinité de solutions, on peut fixer arbitrairement la valeur de certaines
inconnues et calculer les autres en fonction de celles-là.
Si rgA = n = p, f est bijective. Il y a solution unique pour tout y, le système est un système de
Cramer.
19.3.2 Résolution par la méthode du pivot
Méthode du pivot partiel : on respecte l’ordre des colonnes.
Méthode du pivot total : on choisit le pivot dans n’importe quelle colonne ;
Remarque : En calcul numérique, on choisit le pivot qui a la plus grande valeur absolue, car il
y a problème si l’ordre de grandeur du pivot est le même que celui de l’incertitude des calculs.
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !