Sn
Sn(1,2),(1,3), ..., (1, n)
Sn(1,2),(2,3), ..., (n−1, n)
Sn(i;i+ 1) = (1,2, ..., n)i−1(1,2)(1,2, ..., n)1−i
i∈ {2; ...;n−1}
Sn(1,2, ..., n) (1,2)
Ann≥3
Ann≥5
A3A4
n
An
HAn
H
H#supp(g)≥4
σ∈An[g;σ] = gσg−1σ−1∈
H
#supp(g)=4 g= (a, b)(c, d)a, b, c, d
σ= (a, b, e)e a, b, c d
[g;σ]
#supp(g) = 5
#supp(g)≥6σ= (a, b, c)a∈supp(g), b =g(a)
c6=a, b, g(b) [g;σ]
n Dn
A0, A1, ..., An−1
Dn2n A0
Dn
r2π
ns(OA0)
Dn=< r, s >
srs−1
D3D4
E s E s ∈L(E)
s2=id
s
E= ker(s−id)⊕ker(s+id)
G A1A2A3A4A5A6A7A8
−−−→
A1A5=−−−→
A2A6=−−−→
A3A7=−−−→
A4A8O G+
G
f(O)f∈G G
O(R3)
G ϕ :G→
S4
ϕ
[A1A2]
ker ϕ={−id;id}
G
ϕ|G+
G'S4× {Id;−Id}
G