Chapitre 5 :
2nd principe : Entropie
1
er
principe :
principe d’équivalence
sens d’une évolution : le 1
er
principe ne dit pas si le chemin est permis
D’où la nécessité d’introduire le 2
nd
principe :
le 1
er
principe ne dit rien sur la possibilité de transformer ܳ en ܹ
le 1
er
principe ne dit rien sur le sens d’une évolution
I. 2
nd
principe : entropie
1. Définition et propriétés essentielles de l’entropie
Il existe une fonction d’état appelée entropie, notée .
Pour une transformation infinitésimale et réversible, la variation d’entropie est
donnée par :
݀ܵ=ߜܳ
௥é௩
ܶ
Pour un transformation adiabatique quelconque :
∆ܵ0
∆ܵ=0 si la transformation adiabatique est réversible.
Il y a une différence fondamentale entre l’énergie et l’entropie.
1
er
principe : l’énergie totale d’un système fermé et isolé est constante, ou sa variation
provient d’échanges avec le milieu extérieur.
2
nd
principe : l’entropie d’un système fermé et isolé peut augmenter. Elle n’est en général
pas constante et peut évoluer sans échanges avec le milieu extérieur.
ܵ est une fonction d’état. ݂ܵܵሺ݅ ne dépend que des états ݅ et .
On sait calculer ∆ܵ uniquement pour un chemin réversible, mais ∆ܵ ne dépend pas du
chemin suivi.
Pour une transformation irréversible, on « imagine » un chemin réversible.
∆ܵ
௜௙
=න ݀ܵ
=න ൬ߜܳ
௥é௩
ܶ
o ܵ est définie à une constante près.
o ܵ est une grandeur extensive : ܵ
஺ା஻
=ܵ
+ܵ
o ܵ=ܬ.ܭ
ିଵ
o Entropie spécifique (massique) : ܵ=ܯݏ ݏ=ܬ.݇݃
ିଵ
.ܭ
ିଵ
o Entropie molaire : ܵ=ܰݏ ݏ=ܬ.݉݋݈
ିଵ
.ܭ
ିଵ
2. Conséquences du 2
nd
principe
a. Transformation adiabatique réversible
ߜܳ
௥é௩
=0 ݀ܵ=0 ܵ=ܥ
௧௘
Toute transformation adiabatique réversible est en même temps isentropique.
b. Principe de création d’entropie, pour un système isolé
Système isolé : ܳ=0 ∆ܵ>0
ܵ augmente
ܷ=ܥ
௧௘
1
er
principe : principe de conservation, l’énergie d’un système isolé ne peut être ni crée ni
détruite.
2
nd
principe : principe d’évolution, l’entropie d’un système isolé ne peut pas diminuer.
Un système isolé ne passe jamais par le même état.
L’entropie ne peut pas être détruite, mais toute transformation irréversible s’accompagne
d’une création d’entropie.
La conservation d’entropie n’est valable que pour les transformations réversibles.
Enoncé de Clausius : spontanément la chaleur ne peut aller que d’un corps chaud vers un
corps froid.
Conclusion :
Les transformations irréversibles évoluent toujours dans le même sens pour un système
isolé.
création d’entropie
On ne peut pas revenir en arrière pour un système isolé, tout au plus ∆ܵ=0 pour une
transformation réversible.
Enoncé de Raveau : les transformations réelles sont indélébiles.
∆ܵ mesure le degré d’irréversibilité d’une transformation.
c. Cas d’un système non isolé
Il faut l’englober avec les systèmes extérieurs de façon à se ramener à un système isolé.
On applique ensuite le 2
nd
principe :
∆ܵݏݕݏݐ+∆ܵ݁ݔݐ0
Le signe de ∆ܵ(syst) peut être négatif à partir du moment où sa variation est compensée par
∆ܵሺ݁ݔݐ
Conclusion : Un système isolé ne passe jamais 2 fois par le même état. Mais pour un système
non isolé, il peut y avoir des variations de l’entropie au cours d’une transformation
irréversible.
3.
Exemples d’utilisation du 2
nd
principe
a. Variation d’entropie d’un thermostat qui reçoit la quantité de
chaleur
Thermostat : réservoir de chaleur
Pas d’échange de travail avec l’extérieur ou le système
La température reste constante malgré les échanges de chaleur
Le système peut échanger du travail avec l’extérieur autre que le thermostat.
On y applique les 2 principes de la thermodynamique :
1
er
principe : ∆ܷ
௧௛௘௥௠
=ܳ
+ܹ
ୀ଴
=ܳ
2
ème
principe :
∆ܵ
௧௛௘௥௠
=ߜܳ
௥é௩
ܶ=1
ܶߜܳ
௥é௩
=ܳ
௥é௩
ܶ=ܳ
ܶ
ܳ
: chaleur reçue par le thermostat
ܶ : température du thermostat
b. Compression isotherme réversible d’un gaz parfait
ܶ
௚௔௭
=ܶ=ܥ
௧௘
Pour maintenir ܶ
௚௔௭
constant : échange de chaleur entre le gaz et le
thermostat
On applique les 2 principes au gaz, système non isolé :
1
er
principe : calcul de ܹ ∆ܷ=ܹ+ܳ=0
Car l’énergie interne ܷሺܶሻ est une fonction de la température pour un gaz parfait, et
ܶ=ܥ
௧௘
ܹ =−ܸܲ݀ =−ܴܸܰܶ݀
ܸ=−ܴܰܶlnܸ
ܸ
2
nd
principe : calcul de ∆ܵ ߜܳ =ߜܳ
௥é௩
=ܰܥ
௏௠
݀ܶ+ܸܲ݀
∆ܵ=ܲ
ܸܶ݀=ܴܸܰ݀
ܸ=ܴܰlnܸ
ܸ
∆ܵ
௚௔௭
=ܴܰlnܸ
ܸ
Ici ∆ܵ
௚௔௭
<0 car il s’agit d’une compression.
Le système « gaz+thermostat » est un système isolé thermiquement.
Gaz :
∆ܵ
௚௔௭
=ܴܰlnܸ
ܸ
ܳ
௚௔௭
=ܴܰܶlnܸ
ܸ
Thermostat :
∆ܵ
௧௛௘௥௠
=ܳ
ܶ=ܴܰܶ
ܶlnܸ
ܸ
=−ܴܰlnܸ
ܸ
∆ܵ
௧௢௧
=∆ܵ
௦௬௦௧
+ܵ
௚௔௭
=0
Ce résultat est en accord avec le 2
nd
principe car le système total est isolé thermiquement et
que la transformation est réversible.
c. Compression monotherme irréversible d’un gaz parfait
ܶ
=ܶ
=ܶ
ܲ
௘௫௧
=ܲ
On considère le gaz comme un système non-isolé.
1
er
principe : ∆ܷ=ܹ+ ܳ=0 ܿܽݎ ܷܶ ݁ݐ ܶ=ܥ
௧௘
ܹ=න ܲ
௘௫௧
ܸ݀
=−ܲ
൫ܸ
ܸ
ܳ
௚௔௭
=ܲ
൫ܸ
ܸ
=ܲ
ܸ
ቆ1ܸ
ܸ
=ܴܰܶቆ1ܸ
ܸ
2
nd
principe : calcul de ∆ܵ
∆ܵ
௚௔௭
=ܴܰlnܸ
ܸ
Le système « gaz+thermostat » est un système isolé thermiquement.
∆ܵ
௚௔௭
=ܴܰlnܸ
ܸ
∆ܵ
௧௛௘௥௠
=ܳ
ܶ=ܳ
௚௔௭
ܶ= −ܴܰ ቆ1 −ܸ
ܸ
∆ܵ
௧௢௧
= ܴܰ lnܸ
ܸ
ܴܰቆ1ܸ
ܸ
>0
II. Conséquences des deux principes de la
thermodynamique
4. Energie interne , pour un système ሺࡼ,ࢂ,ࢀሻ
1
er
principe sous forme différentielle : ܷ݀=ߜܳ+ߜܹ
Pour une transformation réversible : ߜܳ=ܶ݀ܵ ߜܹ =−ܸܲ݀
On a donc l’identité thermodynamique :
ࢊࢁ=ܸܶ݀ܵܲ݀
ܷ s’exprime simplement en fonction des variables ܵ et . ce sont les variables naturelles
de ܷ .
Pour une transformation infinitésimale isochore, ܷ݀ =0
ܷ݀=ܶ݀ܵ=ߜܳ
∆ܷ=ܳ
Pour une transformation infinitésimale isentropique (adiabatique), ݀ܵ=0
ߜܳ=0
ܷ݀=−ܸܲ݀=ߜܹ
Equation de Maxwell pour ܷ :
Comme ܷ݀ est une différentielle exacte, on a une égalité des dérivées croisées.
ܷ݀=ܸܶ݀ܵܲ݀
ߜܶ
ߜܸ
=൬−ߜܲ
ߜܵ
5. Enthalpie
Par définition : ܪ=ܷ+ܲ
௘௫௧
ܸ
Pour les transformations réversibles uniquement : ܲ
௘௫௧
=ܲ
݀ܪ=ܷ݀+ܸ݀ܲ݀=ܸܶ݀ܵܲ݀+ܸܲ݀+ܸ݀ܲ
݀ܪ=ܶ݀ܵ+ܸ݀ܲ
Variables naturelles de ܪ : ܵ et ܲ
Pour une transformation isobare réversible : ݀ܪ=ܶ݀ܵ=ߜܳ
∆ܪ=ܳ
ߜܶ
ߜܲ
൬−ߜܸ
ߜܵ
Pour une transformation isentropique (adiabatique) :
݀ܪ=ܶ݀ܵ
ୀ଴
+ܸ݀ܲ
݀ܪ=ܸ݀ܲ
Equation de Maxwell : ݀ܪ =ܶ݀ܵ+ܸ݀ܲ
ߜܶ
ߜܲ
=൬−ߜܸ
ߜܵ
6. Relations de Clapeyron
ܷ݀=ߜܳ+ߜܹ=ܸܶ݀ܵܲ݀=ߜܸܳܲ݀
݀ܵ=ߜܳ
ܶ
݀ܪ=ܶ݀ܵ+ܸ݀ܲ=ߜܳ+ܸ݀ܲ
Pour une mole du système
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !