Electromagnétisme, TD n 6, corrigé Propagation dans la matière

Electromagnétisme, TD n6, corrigé
Propagation dans la matière
1 Propagation dans un métal
1) Un métal peut être modélisé comme un gaz d’électrons libres. La constante diélectrique d’un
métal s’écrit donc (modèle de Drude) :
m(ω) = 1 ω2
p
ω2+ω avec ω2
p=ne2
m0
mdépend de la fréquence ω(dispersion). C’est une grandeur complexe, traduisant un déphasage
de la réponse de la matière (densité de polarisation P) par rapport à l’excitation (champ élec-
trique E), via la relation P(ω) = 0[r(ω)1]E(ω). Ce déphasage est à l’origine du mécanisme
de dissipation d’énergie dans le milieu.
L’équation de propagation d’un champ monochromatique dans le gaz d’électron libres est l’équa-
tion de Helmholtz :
E(r, ω) + m(ω)k2
0E(r, ω)=0,
où l’on utilise la notation k0=ω/c = 2π.
Cherchons une solution sous la forme d’une onde plane E=E0exp(ikz t). On obtient :
k2+mk2
0= 0 soit k=±n k0avec n=m.
nest l’indice complexe, noté n=η+, avec κ0, le signe de κétant imposé par le choix d’une
dépendance temporelle des champs en exp(t). L’onde plane s’écrit alors E0exp(κ k0z) exp(iη k0z
t). La première exponentielle est un terme d’atténuation, la seconde est le terme de propaga-
tion.
L’amplitude est atténuée d’un facteur 1/e au bout de la longueur l= 1/(k0κ) = λ/(2πκ).
2) Lorsque γ= 0, la constante diélectrique du métal est réelle. Deux régimes apparaissent :
ω > ωp:rest réelle et positive. nest réel et positif. Une onde plane peut se propager
dans le milieu, sans atténuation, avec une vitesse de phase c/n. L’onde est de la forme
E0exp(in ω/c z t).
ω < ωp:rest réelle et négative. n=est imaginaire pur. Une onde plane dans le milieu
est évanescente (pas de propagation), de la forme E0exp(κ ω/c z) exp(t).
1
Puissance dissipée :
La puissance dissipée par unité de volume, en moyenne temporelle, est P= 0.5 Re(j·E). En
utilisant j=P=0(r1)E, on obtient :
P= 0.5ω000
r|E|2= 0
car la partie imaginaire 00
rde la constante diélectrique est nulle pour le métal sans pertes !
Conclusion :
Pour ω < ωp, l’onde est atténuée dans le métal, mais n’est pas absorbée. Où va l’énergie ?
Lorsque l’onde arrive dans le métal, elle est réfléchie. L’énergie est donc réfléchie, sans jamais
être transformée en chaleur dans le métal par absorption. Bien-sûr, pour un métal réel, une partie
de l’énergie est absorbée dans l’épaisseur de peau, mais l’essentiel est réfléchi.
La partie imaginaire de l’indice décrit l’atténuation de l’onde, sans préciser l’origine physique de
cette atténuation (absorption, réflexion...). L’absorption est décrite par la partie imaginaire de
la constante diélectrique.
2 Propagation dans un cristal ionique
3) La mesure de correspond à la mesure de l’indice optique à des fréquences supérieures à ωT
et ωL. Classiquement, dans un cristal ionique, comme NaCl ou SiC, ces fréquences particulières
se situent dans l’infrarouge "thermique", autour de 10 µm et au-delà. Il suffit de faire une mesure
d’indice dans le visible ou le proche infrarouge pour accéder à cette grandeur (n() = ). s
est une mesure de la constante diélectrique statique. On peut la réaliser aux fréquences basses
en mesurant la capacité d’un condensateur constitué du matériau considéré.
4)
Pour ω[ωT, ωL],est réel négatif et il n’y a pas de propagation possible. En effet étant réel,
n=i,il n’y a pas d’absorption, l’énergie est réfléchie.
5) La relation de dispersion présente différents modes de propagation, liés à ce qui se passe à
l’échelle microscopique dans le cristal.
2
- Pour ω < ωT, il y a interaction entre les phonons (vibrations du réseau) et l’onde électroma-
gnétique : la vibration mixte résultante est un phonon-polariton : c’est à la fois un photon et un
phonon.
- Pour ω=ωT, l’onde EM dégénère en un champ statique "véhiculé" par l’onde acoustique.
- Pour ω >> ωL, la fréquence de l’onde EM est trop élevée pour que les ions puissent avoir un
effet. On retrouve alors une onde optique avec une relation de dispersion classique où nest due
uniquement aux électrons du milieu matériel, c’est à dire que nne dépend que de α+et α.
3
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !