f1f2−Id
f3(f1, f2, f3)f3
u αf1−βf3(αf1−βf3, f2) Π
s t
QA(s(αf1±βf3) + tf2) = α2u11 +β2u33 ±2αβu13s2+u22t2+ 2(αu12 ±βu23)st
Π∩ΣAΠ0∩ΣA(αf1−βf3, f2) (αf1+βf3, f2)
α2u11 +β2u33 −2αβu13s2+u22t2+ 2(αu12 −βu23)st = 1
α2u11 +β2u33 + 2αβu13s2+u22t2+ 2(αu12 +βu23)st = 1 .
s2+t2
α2u11 +β2u33 −2αβu13=u22 =α2u11 +β2u33 + 2αβu13
2(αu12 −βu23) = 0 = 2(αu12 +βu23).
α β u12 =u23 = 0
u13 = 0 α2u11 +β2u33 =u22
(f1, f2, f3)QAu11 u22 u33
A u22 α2β2u11 u33 f2
u22 f1f3
Π Π0ΣA
ΣAΠ
ΣA
xR3
QA3(x) = 4x2
1+ 5x2
2+ 4x2
3−2x1x2−2x2x3= 3(x2
1+x2
2+x2
3)+(x1−x2)2+ (x2−x3)2≥3||x||2.
A3ΣA3
xR3
QA3(x) = 4(x2
1+x2
2+x2
3) + x2
2−2x1x2−2x2x3= 4(x2
1+x2
2+x2
3) + x2(x2−2x1−2x3)
ΣA3x2= 0 x2−2x1−2x3= 0 O
1/2
ΣA3
A3ΣA3
(f1, f2, f3)R3(f1, f2) ΣA3
(s, t)
QA3(sf1+tf2) = QA3(f1)s2+ 2ΦA3(f1, f2)st +QA3(f2)t2