A1
x1+3x2= 0 3e1e2
3x1x2= 0 e1+3e2
A1
A1X25X+ 6
λ A1A1λId
A1A1λId
A1X=λX
P=1
23 1
13D=1 0
0 5
tP.P =I2det(P) = 1 P
tP.A1.P =1 0
0 5 =D .
P D
X P 1X(y1, y2)
tX.A1.X =tX.tP1.D.P 1.X =y2
1+ 5y2
2
xR2QA1(x)P1X
X P A1S+
2(R)
P
A P
D
P
(O, (3e1e2)/2,(e1+3e2)/2) ΣA1
y2
1+ 5y2
2= 1
e=q11
5
1=2
5.
x2
1/a2+x2
2/b2= 1 0 < b < a c =a2b2
c e =c/a e
a= 1 b= 1/5
xR2
QA2(x) = 2x2
1+ 42x1x2+ 4x2
2= 2(x1+2x2)20
QA22e1e2
A2S+
2(R)
ΣA2
2(x1+2x2)2= 1
ΣA22x1+ 2x2= 1
2x1+ 2x2=1
A
PtP AP (λ1, . . . , λn)
A X Rn(y1, . . . , yn)P1X
QA(x) =
n
X
i=1
λiy2
i.
P x Rn(y1, . . . , yn)x
yii n
A QA
A S+
n(R) (ii)(i)
ΣAQA
λ A x
λ QA(x) = λ||x||2=λ x/λΣAΣA
A
ΣAλ x A
x/λ+Ker(A) ΣAΣAA
A µ y
A t xt
cosh(t)x
λ+ sinh(t)y
µ
ΣA||xt|| q1
λ1
µett+ΣA
AΣA
A(iii)(ii)
A S+
n(R)QARnR
a b x 0< a QA(x)b QA
xRn\ {0}aQAx
||x||=1
||x||2QA(x)b
xRna||x||2QA(x)b||x||2.
ΣAO1/a
QAR
ΣAxRnQA(x)x/pQA(x) ΣA
(i)(iii)
(i) (ii) (iii) ΣA
A
ΠRnQAΠ
A S+
n(R)QARn\ {0}Π\ {0}
QAΠ
Π
ΣAΠ = {xΠ|QA|Π(x) = 1}.
A S+
n(R) Π RnQAΠ
Π ΣAΠ
Π ΣAΠQA
QA
Rn\ {0}QAA S+
n(R)
AΣAΣA
O1/λ1O
1/λ1
λ µ µ
µ
rxΣAx=u+v u v
r(x) = u+r(v)r(v) ∆v
QA(r(x)) = λ||u||2+µ||r(v)||2=λ||u||2+µ||v||2=QA(x) = 1
ΣA
Π ∆ ΣAΓ ΣA
Γ Γ ∆
Π ΣAOΓ Γ O
Γd O
Γ ∆ O d
(f1, f2, f3)A(λ1, λ2, λ3)x=
x1f1+x2f2+x3f3ΣAO d
QA(x) = 1 ||x||2=d2QA(x)λ(x2
1+x2
2+x2
3) = 1 λd2
λ A (µλ)x2
3= 1λd2(µλ)x2
1= 1λd2
λ λ1λ3λd2= 1 λµ
ΣAO d
∆ Π1Π2
Π ∆ Π1Π2Π
Γ Γ ΣAΠ Γ
∆ ΣAxR3
u+v u vxΣAΠv QA(u+v) = 1
v= 0 λ||u||2= 1 λ
ΣA
ΣAΠ
QAΠQA
Π Π Π0
ΣAΠΠ0ΣAΠ0
QAΠ0AΠ0A
AΠ0
λ2λ1λ2>0
λ3λ2λ3λ1
λ3λ2x3λ3λ1x1= 0
R3
(x1, x2, x3)ΣAΠQA(x) = 1 pλ3λ2x3pλ3λ1x1= 0
λ2||x||2+ (pλ3λ2x3pλ3λ1x1)(pλ3λ2x3pλ3+λ1x1) = 1
pλ3λ2x3pλ3λ1x1= 0
λ2||x||2= 1 pλ3λ2x3pλ3λ1x1= 0
λ2ΣAΠO1/λ2Π
Π0λ3λ2x3+λ3λ1x1= 1 ΣAΠ0
O1/λ2Π0λ3λ1Π Π0
Π Π0
f2(f1, f3)
D D0 Π Π0Π Π0
f1f3Π Π0f1f3D
D0
u D0D0u(f1, f3)
u=αf1+βf3α β D0f1
f3u(f1, f3)α2+β2= 1
,Π0) (f1, f2)
Π0Π Π0Π
f1f2Id
f3(f1, f2, f3)f3
u αf1βf3(αf1βf3, f2) Π
s t
QA(s(αf1±βf3) + tf2) = α2u11 +β2u33 ±2αβu13s2+u22t2+ 2(αu12 ±βu23)st
ΠΣAΠ0ΣA(αf1βf3, f2) (αf1+βf3, f2)
α2u11 +β2u33 2αβu13s2+u22t2+ 2(αu12 βu23)st = 1
α2u11 +β2u33 + 2αβu13s2+u22t2+ 2(αu12 +βu23)st = 1 .
s2+t2
α2u11 +β2u33 2αβu13=u22 =α2u11 +β2u33 + 2αβu13
2(αu12 βu23) = 0 = 2(αu12 +βu23).
α β u12 =u23 = 0
u13 = 0 α2u11 +β2u33 =u22
(f1, f2, f3)QAu11 u22 u33
A u22 α2β2u11 u33 f2
u22 f1f3
Π Π0ΣA
ΣAΠ
ΣA
xR3
QA3(x) = 4x2
1+ 5x2
2+ 4x2
32x1x22x2x3= 3(x2
1+x2
2+x2
3)+(x1x2)2+ (x2x3)23||x||2.
A3ΣA3
xR3
QA3(x) = 4(x2
1+x2
2+x2
3) + x2
22x1x22x2x3= 4(x2
1+x2
2+x2
3) + x2(x22x12x3)
ΣA3x2= 0 x22x12x3= 0 O
1/2
ΣA3
A3ΣA3
(f1, f2, f3)R3(f1, f2) ΣA3
(s, t)
QA3(sf1+tf2) = QA3(f1)s2+ 2ΦA3(f1, f2)st +QA3(f2)t2
1 / 11 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !