n∈N∗z−n=1
zn
z−n= 1/zn= 1/zn= 1/zn=1
zn
= (z−1)n=z−n
R♥C
z z′C
|¯z|=|z|
|zz′|=|z| × |z′|
|1/z′|= 1/|z′|pour z′6= 0
|z/z′|=|z|/|z′|pour z′6= 0
|zn|=|z|npour n ∈Z∗
|zz′|=pzz′×zz′=pzz′×zz′=pzz ×z′z′=√zz ×pz′z′=|z| × |z′|
R♥C
a b
cos(a+b) = cos acos b−sin asin b
sin(a+b) = sin acos b+ sin bcos a
z z′
①arg zz′= arg z+ arg z′[2π]
②arg ¯z=−arg z[2π]
③arg 1
z=−arg z[2π]
④arg z
z′= arg z−arg z′[2π]
⑤arg zn=narg z[2π]
z z′
z=|z|(cos θ+ i sin θ)z′=|z′|(cosθ′+ i sin θ′)
①
①zz′=|z|(cos θ+ i sin θ)× |z′|(cosθ′+ i sin θ′)
zz′=|z| × |z′|(cos θcos θ′−sin θsin θ′+ i(sin θcos θ′+ sin θ′cos θ))
=|z| × |z′|(cos(θ+θ′) + i sin(θ+θ′))
2π
|zz′|=|z| × |z′|arg zz′=θ+θ′= arg z+ arg z′[2π]
②(Ox)M z M′
¯z M M′
(~u ;−−−→
OM′) = −(~u ;−−→
OM)②
③1/z = (1/|z|2)ׯz. ① ② 1/|z|2∈R+arg(1/|z|2) = 0
④① ③ z/z′=z×(1/z′)
⑤n①