(un)
un+1 =f(un)f I
f(un)
f
f(un)u1u0
f(u2n) (u2n+1)
u1> u0
P(n)un+1 >unP(k)uk+1 >ukf
uk+1 >uk=f(uk+1)>f(uk) =uk+2 >uk+1
pn=u2nin=u2n+1
pn+1 =ff(pn)in+1 =ff(in)
f fof p i p
u2>u0f u36u1i16i0i
RC
(un)
unI n
xI, f(x)>x(un)
xI, f(x)6x(un)
I f u0I
P(n)n n N
P(n) : un+1 >un
u1=f(u0)>u0P(0)
kNP(k)
uk+2 =f(uk+1)>uk+1 P(k+ 1)
nNun+1 >un
(un)
RC
f(un)
un+1 =f(un)
f I (un)
f f() =
(un)lim
n+un= lim
n+un+1 =ℓ f
I ℓ lim
xf(x) = f()
lim
n+f(un) = f() (un)f() =
RC
a f f
a ǫ lim
xaǫ(x) = 0
f(x) = f(a) + (xa)f(a) + ǫ(x)
x a ǫ(x) (xa)f(x)f(a)
RC
fRf=ff(0) = 1
fRf=f(0) = 1
xRf(x)f(x) = 1 f
φxRφ(x) = f(x)f(x)φ= 0
φ(0) = 1
f g R
f=f g=g f(0) = g(0) = 1
ψRψ=f
gψ= 0 ψ(0) = 1
ψ f =g
RC
a b n
exp(a) = 1
exp(a)
exp(a+b) = exp(a)×exp(b)
exp(ab) = exp(a)
exp(b)
exp(a×n) = (exp(a))n
n
bRχ x b
χ(x) = exp(x+b)
exp(x).
χ= 0 χ(0) = exp(b)xexp(x+b) = exp(x) exp(b)
b
aP(n) exp(a×n) = (exp(a))n
nP(n)nNexp(a)6= 0 exp(a)0= 1 = exp(0)
RC
Cexp
xR,ex>x+ 1
φ φ(x) = exx1
RφRφ(x) = ex1
ex1>0ex>e0x>0
φ φ(0) = 0 φ
R
RC
z zC
z=z
z+z=z+z
zz=z×z
1
z=1
zz6= 0
z
z=¯z
zz6= 0
zn= (¯z)nnZ, z C
z zz=a+ ib z=a+ ib
zz= (a+ ib)(a+ ib) = aabb+ i(ab+ab) = aabbi(ab+ab)
z×z= (aib)(aib) = ···=aabbi(ab+ab) = zz
1
z=z
zz=1
zz×z
zzR+
1
z=1
zz×z=1
zz×z=1
zz×z=1
z
z
z=z×1
z
nN
nNzn=1
zn
zn= 1/zn= 1/zn= 1/zn=1
zn
= (z1)n=zn
RC
z zC
|¯z|=|z|
|zz|=|z| × |z|
|1/z|= 1/|z|pour z6= 0
|z/z|=|z|/|z|pour z6= 0
|zn|=|z|npour n Z
|zz|=pzz×zz=pzz×zz=pzz ×zz=zz ×pzz=|z| × |z|
RC
a b
cos(a+b) = cos acos bsin asin b
sin(a+b) = sin acos b+ sin bcos a
z z
arg zz= arg z+ arg z[2π]
arg ¯z=arg z[2π]
arg 1
z=arg z[2π]
arg z
z= arg zarg z[2π]
arg zn=narg z[2π]
z z
z=|z|(cos θ+ i sin θ)z=|z|(cosθ+ i sin θ)
zz=|z|(cos θ+ i sin θ)× |z|(cosθ+ i sin θ)
zz=|z| × |z|(cos θcos θsin θsin θ+ i(sin θcos θ+ sin θcos θ))
=|z| × |z|(cos(θ+θ) + i sin(θ+θ))
2π
|zz|=|z| × |z|arg zz=θ+θ= arg z+ arg z[2π]
(Ox)M z M
¯z M M
(~u ;
OM) = (~u ;
OM)
1/z = (1/|z|2)ׯz. ① ② 1/|z|2R+arg(1/|z|2) = 0
① ③ z/z=z×(1/z)
n
RC
A B zAzB
C D
arg(z
AB ) = arg (zBzA) = (~u ;
AB)
arg zBzA
zDzC= (
CD;
AB)
M(zBzA)
OM =
AB
arg (zBzA) = (~u ;
OM) = (~u ;
AB)
arg zBzA
zDzC= arg(zBzA)arg(zDzC)
= arg(z
AB )arg(z
CD)
= (~u ;
AB)(~u ;
CD)
= (
CD;~u ) + (~u ;
AB)
= (
CD;
AB)
RC
A(xA;yA;zA)P
ax +by +cz +d= 0 d(A;P)
d(A;P) = |axA+byA+czA+d|
a2+b2+c2
d(A;P) = AH H A PBP
AB ·~n =
AH ·~n
AH =|
AB ·~n |
k~n k
d=(axB+byB+czB)
RC
R
y=ay fk
fk(x) = keax
k
fkk
1 / 9 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !