12
y
|+zi
|+ >
z
D
E
z
y
x
z
A
B
R
A
B
|E >
|E >
I
x
|+zi |+xi,|−xi
R
z
D E A, B
R D, E PDPE
A
|+ziI|Ei
hE|Ei= 1 A
|EAiB
|EBi
A B
Hspin =C2
|Ei ∈ Henv Htot =Hspin ⊗ Henv
ψavant ∈ Htot I A, B
ψapres A, B
ψapres D, E
ρavant =|ψavantihψavant|
˜ρavant = Trenv (ρavant)zi Henv
˜ρapres = Trenv (ρapres)
hEA|EBiPDPE
hEA|EBi
hEA|EBi= 1 hEA|EBi= 0
˜ρapres ~
P R
˜ρapres =1
2Id + ~
P .ˆ
~σ
Hspin
Henv
˜ρ(t) = Trenv (ρ(t))
˜ρapres =1
20
01
2
τdecoh.
Tr (|aihb|) = ha|bi
I R
A B
Htot =C2⊗ Henv
|ψ(0)i=|S(0)i⊗|E(0)i
|S(0)i=|+zi=1
2(|+xi+|−xi)C2,|E(0)i∈Henv.
ˆ
H=ˆ
Szˆ
He,ˆ
Sz=1/2 0
01/2xi
ˆ
HeHenv |E(0)iˆ
He
|ψ(t)i=eit ˆ
H|ψ(0)it
ρ(t) = |ψ(t)ihψ(t)|˜ρ=
Trenv (ρ(t)) xi
hE(0) |E(t)i=hE(0) |eit ˆ
He|E(0)iN
N
Hˆ
H:H → H
Henv =H ⊗ H ⊗ . . . ⊗ H
| {z }
N
ˆ
Henv =1
N
N
X
i=1
ˆ
Hi
ˆ
Hi= Id . . . Id ˆ
H
|{z}
position i Id . . . Id
i
|E(0)i=|e(0)i ⊗ . . . ⊗ |e(0)i,ke(0)k= 1.
he(0) |ˆ
H|e(0)i= 0 σ2:= he(0) |ˆ
H2|e(0)i
t N → ∞
hE(0) |E(t)i=et2σ2/2
˜ρ(t) = Trenv (ρ(t))
N→∞
1
21et2σ2/2
et2σ2/21
˜ρ(t)|+zi=1
2(|+xi+|−xi)
|−zi=1
2(|+xi − |−xi)
S(˜ρ(t))
t0t→ ∞ t
~
P(t) ˜ρ(t) = 1
2Id + ~
P(t).ˆ
~σ
τdecoh. =1
σ
ρ(0) = (|S(0)ihS(0) |)ρenv
ρenv =ρe. . . ρe
Tr ˆ
Hρe= 0
Ei=
~ωi+1
2iN
T i Ei
pi=1
Z0eEi
kT =1
Z0e~ω(i+1/2)
kT =1
Zeβi
β=~ω
kT
1
Z=1
Z0e~ω
2kT ZPipi= 1
Z β
S β
S β 0
β→ ∞
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !