Groupe TICE Grenoble _ Fiche professeur Page 1
Objectifs :
Représenter la répétition d’expériences identiques et indépendantes à 3 issues par un arbre pondéré.
Calculer la loi de probabilité d’une variable aléatoire qui suit une loi trinomiale.
Construire et exécuter un algorithme pour calculer une probabilité.
Niveaux : 1ère S et 1ère ES/L
Durée : 2h (1h sur papier- travail individuel / 1h pour écrire tester l’algorithme– travail en groupe)
Prérequis :
Décrire une expérience à l’aide d’un arbre.
Calculer une loi de probabilité.
Bases de l’algorithme(Déclaration de variables / Boucles/ Conditions / Affichage).
Outils TICE : Logiciel de programmation : Algobox
Référence au programme :
Déroulement :
On répète n fois de manière identique et indépendante l’expérience « tourner la roue », et on note la couleur
obtenue. Trois issues sont possibles : on peut obtenir la couleur Rouge, Verte ou Bleue.
L’activité se déroule en deux temps :
Dans une première partie, l’élève étudie une situation à 3 issues et 3 répétitions en complétant un arbre.
Puis on introduit X la variable aléatoire définit par la règle du jeu suivante : le joueur gagne 2€ si au bout
de n expériences, la couleur rouge n’est jamais apparue, il gagne 5€ si la couleur rouge apparaît une seule
fois, et perd 1€ si elle apparaît plus d’une fois. On va alors calculer P(X=-1), P(X=2) et P(X=5).
X pouvant prendre 3 valeurs, on parlera de loi trinomiale.
On se rend vite compte que l’arbre a ses limites. Sa représentation devient impossible lorsque le nombre
de répétition de l’expérience augmente. C’est pourquoi dans la deuxième partie, on veut généraliser le
nombre de répétition à n, et écrire un algorithme permettant de calculer la probabilité des 3 gains du jeu.
L’algorithme étant complexe et assez long (plusieurs boucles et conditions), il est préférable de mettre en
place un travail de groupes.
TP : Expériences à 3 issues & loi trinomiale
« Le jeu de la roue »
Groupe TICE Grenoble _ Fiche professeur Page 2
Enoncé :
_ Mr Hazard tourne la roue de casino représentée ci-contre.
_ L’expérience consiste à tourner n fois la roue et à regarder la couleur obtenue à
chaque fois.
_ On tombe sur la portion bleue avec une probabilité de
,
la portion verte avec une probabilité de
et la portion rouge avec une probabilité de
.
_ Soit X la variable aléatoire définie par la règle du jeu suivante : le joueur gagne 2
si au bout de n expériences, la couleur rouge n’est jamais apparue, il gagne 5€ si la
couleur rouge apparaît une seule fois, et perd 1€ si elle apparaît plus d’une fois.
Quel que soit le nombre n d’expériences (répétées de manières identiques et
indépendantes), X peut donc prendre 3 valeurs : X=-1 , X=2 ou X=5.
La loi de probabilité de la variable aléatoire X se nomme loi trinomiale.
1. Cas où n=3 et arbre de probabilité
a. Reproduire et compléter l’arbre ci-contre afin d’obtenir tous les chemins possibles.
Groupe TICE Grenoble _ Fiche professeur Page 3
b. Dans le tableau suivant, reporter le nombre de chemins réalisant chaque suite de couleurs, sans tenir
compte de l’ordre.
Chemins
possibles
(sans ordre)
V-V-V
R-R-R
B-V-R
V-V-B
V-V-R
R-R-B
R-R-V
B-B-R
B-B-V
Total
Nombre de
chemins
1
1
6
3
3
3
3
3
3
27
Remarque : On vérifiera que le nombre total de chemins trouvé est cohérent avec l’arbre ci-dessus.
c. Quelle est la probabilité que Mr Hazard obtienne dans l’ordre les couleurs « Rouge-Bleu-Vert »?
  .
d. Mr Hazard dit qu’il gagnerait plus facilement la partie si le jeu consistait à avoir la combinaison « Rouge-
Bleu-Vert » dans n’importe quel ordre. Pourquoi a-t-il raison ? Quelle est cette probabilité ?
Il a raison car plusieurs chemins sont possibles : 6 d’après l’arbre ou le tableau.
     

  .
e. Mr Hazard est gagnant s’il obtient un unique Rouge. Quelle est la probabilité qu’il gagne au jeu de la roue?
Rappelons que X est la variable aléatoire qui prend la valeur 5 si la couleur rouge apparaît une seule fois.
Toutes les possibilités pour gagner sont, dans le désordre : R-V-V , R-B-B, R-V-B
               
   
  

 
   .
f. Compléter la loi de probabilité de X.
xi
-1
2
5
P(X=xi)






                     
   
  
  
  

   .
              
   
  
  

  .
2. Généralisation et programmation
On se rend vite compte que l’arbre a ses limites : sa représentation devient impossible lorsque le nombre de
répétition de l’expérience augmente (le nombre de branches est de 3n !). C’est pourquoi dans la deuxième partie,
on veut généraliser le nombre de répétitions à n, et écrire un algorithme permettant de calculer les probabilités de
chaque gain.
Groupe TICE Grenoble _ Fiche professeur Page 4
Travail de groupe demandé :
A l’aide des indications des deux paragraphes ci-dessous, écrire un algorithme permettant de calculer et
d’afficher P(X=-1), P(X=2) et P(X=5).
Puis, utiliser le logiciel Algobox pour programmer cet algorithme. Vérifier le résultat de la question f précédente.
Quelle est la probabilité que M. Hazard gagne 5€ en tournant 10 fois la roue ?
Que constatez-vous lorsque l’on fait augmenter le nombre d’expériences n ?
a. Principe de l’algorithme
Une grande partie de la programmation consiste à construire l’arbre.
On choisit tout d’abord l’ordre suivant pour explorer l’arbre :
Rouge-Vert-Bleu.
Cela signifie que l’on va parcourir les branches partant d’un nœud Rouge
dans un premier temps, puis les branches avec un nœud Vert et enfin
Bleu.
Ainsi, la première branche parcourue sera Rouge-Rouge-Rouge et la
dernière : Bleu-Bleu-Bleu.
Ci-contre : exemple de l’ordre de parcours pour n=2 (lire l’arbre de bas en
haut)
A chaque fois qu’une branche est terminée, on compte le nombre de
« Rouge » puis on évalue le gain (X=-1, X=2 ou X=5).
Ensuite, il faut calculer la probabilité de réaliser la branche.
Puis, on fait la somme des probabilités de toutes les banches qui ont le
même gain.
L’algorithme affiche en dernier les 3 probabilités :
- la probabilité de perdre 1€ (si la couleur Rouge est apparue plus d’une
fois) : variable S.
- la probabilité de gagner 2€ (si le Rouge n’est jamais apparu) : variable Q.
- et la probabilité de gagner 5€ (si le Rouge est apparu exactement une
fois) : variable R.
Comme Algobox ne considère que les nombres, on identifie la couleur
Rouge à 1, la couleur Verte à 2 et la couleur Bleue à 3.
b. Variables et initialisations
- S, Q, R initialisés à 0.
- Demander n (nombre d’expériences)
- Liste L de taille n (initialisés à n cases rouges)
- Combinaison est une variable booléenne : 0 si Faux, 1 si Vraie. Si on vient de changer le rouge en vert ou
le vert en bleu, combinaison vaut 1, par contre, lors d’un changement de nœud, combinaison vaut 0.
Combinaison est initialisée à 0.
- La variable booléenne continueBoucle vaut 1 tant que la dernière combinaison Bleu-Bleu-Bleu n’a pas été
générée (et 0 sinon).
continueBoucle est initialisée à 1
- Les variables i et indice balayent la liste de 1 à n.
- La variable compteur initialisée à 0 compte le nombre de « Rouge », une fois une branche terminée.
- La variable proba (initialisée à 1) calcule la probabilité d’obtenir le tirage de la liste L, une branche étant
terminée.
Groupe TICE Grenoble _ Fiche professeur Page 5
c. Solution : Algorithme
- Déclarer 3 variables : S, Q, R
- Créer liste L de taille n.
- Déclarer variable continueBoucle
- Déclarer proba (nombre) et compteur (nombre)
- Début programme
- Initialiser S :=0, Q :=0 et R :=0.
- Demander n (nombre d’expériences).
- Initialiser liste : toutes les cases rouges de 1 à n.
Pour i de 1 à n, L[i] :=1 ; finPour
- Initialiser continueBoucle := 1 (vraie)
- Déclarer proba (nombre) et compteur (nombre)
- Tant que (continueBoucle =1) faire :
proba := 1 (initialisation de la probabilité d’obtenir le tirage de la liste L)
compteur := 0 (compte le nombre de Rouge dans la liste)
Pour i allant de 1 à n
o Si L[i] =1 (Rouge) alors Compteur := compteur +1 ;   
, FinSi
o Si L[i] =2 (Vert) alors   
, FinSi
o Si L[i] =3 (Bleu) alors   
, FinSi
Fin Pour
Si compteur = 0 alors Q := Q + proba, FinSi
Si compteur = 1 alors R := R + proba, FinSi
Si compteur > 1 alors S := S + proba , FinSi
continueBoucle := 0 (Faux)
Pour i allant de 1 à n
o Si L[i]   (Bleu) alors continueBoucle := 1 (vraie) (On s’arrête quand tout est bleu).
FinPour
Si continueBoucle =1
o Définir variable Indice Indice (nombre de 1 à n) et combinaison (booléen)
o Indice := 1 et combinaison := 0 (faux)
o Tant que (Indice <=n) et (combinaison = 0) faire
Si L[Indice] = 1 (Rouge) alors L[indice]=2 (Vert) ; combinaison :=1 ; FinSi
Si Si L[Indice] = 2 (Vert) alors L[indice]=3 (Bleu) ; combinaison :=1 ; FinSi
Si L[Indice] = 3 (Bleu) alors L[indice]=1 (Rouge) ; Indice := Indice + 1 ; FinSi
Fin Tant que
Fin Si
Fin Tant que
_ Afficher : « la probabilité de perdre 1€ est de : », S
_ Afficher : « la probabilité de gagner 2€ est de : », Q
_ Afficher : « la probabilité de gagner 5€ est de : », R.
_ Fin Programme.
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !