EP 0888345 B1

publicité
(19)
&
(11)
EP 0 888 345 B1
EUROPEAN PATENT SPECIFICATION
(12)
(45) Date of publication and mention
(51) Int Cl.:
C07D 451/02 (2006.01)
A61K 51/04 (2006.01)
of the grant of the patent:
05.05.2010 Bulletin 2010/18
C07D 401/00 (2006.01)
(86) International application number:
(21) Application number: 97917552.8
PCT/US1997/004403
(22) Date of filing: 19.03.1997
(87) International publication number:
WO 1997/034892 (25.09.1997 Gazette 1997/41)
(54) SIGMA-2 RECEPTORS AS BIOMARKERS OF TUMOR CELL PROLIFERATION
SIGMA-2 REZEPTOREN ALS BIOMARKIERER DER TUMORZELLENPROLIFERATION
RECEPTEURS SIGMA-2 UTILISES EN TANT QUE BIOMARQUEURS DE LA PROLIFERATION DES
CELLULES TUMORALES
(84) Designated Contracting States:
(56) References cited:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE
Designated Extension States:
AL LT LV RO SI
(30) Priority: 20.03.1996 US 13717 P
(43) Date of publication of application:
07.01.1999 Bulletin 1999/01
(73) Proprietor: Wake Forest University Health
Sciences
Winston-Salem, NC 27157-1023 (US)
(72) Inventors:
• MACH, Robert, H.
Winston-Salem, NC 27106 (US)
• WHEELER, Kenneth, T., Jr.
Winston-Salem, NC 27106 (US)
• YANG, Biao
Winston-Salem, NC 27103 (US)
• CHILDERS, Steven, R.
Winston-Salem, NC 27106 (US)
WO-A-93/08185
US-A- 4 797 387
US-A- 5 106 843
US-A- 5 436 251
WO-A-95/21820
US-A- 4 808 588
US-A- 5 330 990
• KLINE R.H. ET AL.: ’Synthesis of 3Carbamoylecgonine Methyl Ester Analogues as
Inhibitors of Cocaine Binding and Dopamine
Uptake’ J. MED. CHEM. vol. 34, 1991, pages 702
- 705, XP002947712
• TURCONI M. ET AL.: ’Synthesis of a New Class
of 2,3-Dihydro-2-oxo-1H-benzimidazole-1-carbox
ylic Acid Derivatives as Highly Potent 5-HT3
Receptor Antagonists’ J. MED. CHEM. vol. 33,
1990, pages 2102 - 2108, XP002947713
• BERMUDEZ J. ET AL.: ’5-Hydroxytryptamine (5HT3) Receptor Antagonists. 3. Ortho-Substituted
Phenylureas’ J. MED. CHEM. vol. 33, 1990, pages
1932 - 1935, XP002947714
Remarks:
The file contains technical information submitted after
the application was filed and not included in this
specification
EP 0 888 345 B1
(74) Representative: Beresford, Keith Denis Lewis et al
Beresford & Co.
16 High Holborn
London
WC1V 6BX (GB)
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).
Printed by Jouve, 75001 PARIS (FR)
EP 0 888 345 B1
Description
Background of the Invention
5
10
15
[0001] Breast cancer is characterized by a proliferative potential that can vary considerably from patient to patient.
The rate of cell proliferation has been shown in breast tumors to predict the response to radiation therapy and chemotherapy. Presently, measures of cell proliferation are obtained by histological or flow-cytometric analysis. Both methods
are limited by sampling procedures and only 60-70% of patient samples are suitable for flow cytometric analysis.
[0002] It was recently demonstrated that sigma-2 (σ2) receptors are expressed in high density in a number of human
and rodent breast cancer cell lines (Cancer Research, 55, 408 (1995)). However, their expression is heterogenous, and
their function is unknown.
[0003] A continuing need exists for noninvasive methods that can accurately assess the proliferative status of breast
cancer. Such methods could have a significant impact on determining an optimal therapy for treating breast cancer
patients.
[0004] United States Patent No. 4,808,588 discloses heterocyclic ureas and carbonates useful as pharmaceuticals,
being compounds of the formula illustrated below, or pharmaceutically acceptable salts thereof:
20
25
wherein:
30
35
Het is monocyclic heteroaryl having two adjacent carbon atoms, a and b, depicted in formula (I); R1 and R2 are
independently selected from hydrogen, halogen, CF3, C1-6 alkyl and C1-6 alkoxy;
R3 is hydroxy, C1-6 alkoxy, C3-7 alkenyl-methoxy, phenoxy or phenyl C1-4 alkoxy in which either phenyl moiety may
be substituted by one or two C1-6 alkyl, C1-6 alkoxy or halo; CO2R6 wherein R6 is hydrogen or C1-6 alkyl, CONR7R8
or SO2NR7R8 wherein R7 and R8 are independently hydrogen or C1-6 alkyl or together are C4-6 polymethylene,
NO2, (CH2)mOR9 wherein m is 1 or 2 and R9 is C1-6 alkyl or S(O)nR10 wherein n is 0, 1 or 2 and R10 is C1-6 alkyl;
L is NH or O;
Z is a group of formula (a), (b) or (c);
40
45
50
55
2
EP 0 888 345 B1
5
10
wherein n is 2 or 3; p is 1 or 2; q is 1 to 3; r is 1 to 3; and
R4 or R5 is C1-4 alkyl.
[0005] United States Patent No. 5,106,843 discloses heterocyclic compounds, particularly aryl ureas and carbamic
acid derivatives of the general formula given below, which are useful as 5-HT3 antagonists:
A-NHCW-Y-B
15
wherein A is a specified aromatic radical including
3,5-dichlorophenyl;
20
W is O or S;
Y is NH or O, and
B is a specified saturated azacyclic ring such as tropan-3-yl or quinuclidin-3-yl.
25
Summary of the invention
30
[0006] The present invention provides a noninvasive method to detect cancer cells or to assess the proliferative status
of cancer cells which express sigma-2 (σ2) receptors, such as cells of solid tumors. The method preferably comprises
(a) ; contacting in vitro a cell sample of the tumour with an amount of a detectably labeled compound of formula (I):
35
40
45
50
55
wherein R is C6F5CH2, or T-C6H4CH2 wherein T is halo, CH3S, CH3O, NH2 or H; A is NH, O or S, B is NH, O or S; G
is O or S; D is CH or N; E is CH or N; F is CH or N; Y and Z are individually H, halo, OH, (C1-C4)alkyl, (C1-C4)alkoxy,
(C1-C4)alkylC(O), (C1-C4)alkylS, NH2, SH, N(R)2 or together are OCH2O, wherein said alkyl can be straight, branched,
cycloalkyl or (cycloalkyl)alkyl; X is (CH2)2, (CH2)3 or CH=CH; or a pharmaceutically acceptable salt thereof, wherein the
label comprises a radionulide; and (b) determining the extent to which the compound of formula (I) binds to the cells of
said tumour, said extent providing a measure of the proliferative status of said tumour, which status correlates to the
extent of sigma-2 receptor expression by said cells. The method is based on the ability of the compound of formula (I)
to selectively bind to sigma-2 (σ2) receptors, versus σ1 receptors.
[0007] Groups Z and Y can occupy any ring position, i.e., any one of E, D or F can CY or CZ. Preferably, at least one
of Y or Z is not H. Preferably A is O and B is NH. Preferably, R is CH, benzyl or phenyl. Alkyl can be branched, unbranched,
cycloalkyl or (cycloalkyl)alkyl.
[0008] The label is a radionuclide, selected from a radioisotope of halogen (125I, 123I, 18F, 19F) or 11C. The compound
3
EP 0 888 345 B1
5
is preferably administered parenterally, i.e., by intravenous, i.p., intrathecal or enteral administration.
[0009] Novel compounds of formula (I), labeled and unlabeled, are also within the scope of the invention, as are
pharmaceutical compositions comprising one or more of said compounds. The unlabeled compound can be used as
intermediates to make labeled compounds or as sigma-2 specific ligands which can be used in competitive assays to
assay for the presence of σ2 receptors, as described below. The configuration at the 3-position can be exo- or endo-;
of which endo- is preferred.
Brief Description of the Figures
10
[0010]
FIG. 1 shows compounds of the invention.
FIG. 2 shows compounds of the invention.
FIG. 3 shows compounds of the invention.
15
Detailed Description of the Invention
20
[0011] Processes for preparing compounds of formula 1 are illustrated by the following procedures in which the
meanings of the generic radicles are as given above unless otherwise qualified.
[0012] Compounds of formula I wherein A is oxygen and B is nitrogen can generally be prepared by reacting an
isocyanate or formula II with an alcohol of formula III under standard conditions.
25
30
35
Solvents, bases, and reaction conditions suitable for such a reaction are well known to the art. For example, the reaction
may conveniently be carried out under conditions similar to those described in Example 1.
[0013] Compounds of formula I wherein A is nitrogen and B is nitrogen can generally be prepared by reacting an
isocyanate of formula II with an amine of formula IV under standard conditions.
40
45
50
55
Solvents, bases, and reaction conditions suitable for such a reaction are well known to the art.
[0014] It is noted that many of the starting materials employed in the synthetic methods described above are commercially available, are reported in the scientific literature, or can be prepared using methods analogous to those described
in the literature.
[0015] In cases where compounds are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compounds as salts may be appropriate. Examples of pharmaceutically acceptable salts are organic acid
addition salts formed with acids which form a physiological acceptable anion, for example, tosylate, methanesulfonate,
4
EP 0 888 345 B1
5
10
15
20
25
30
35
40
45
50
55
acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, α-ketoglutarate, and α-glycerophosphate. Suitable
inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.
[0016] Pharmaceutically acceptable salts may be obtained using standard procedures well known in the art, for example
by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable
anion. Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example calcium) salts of
carboxylic acids can also be made.
[0017] The compounds of formula I can be formulated as pharmaceutical compositions and administered to a mammalian host, such as a human patient in a variety of forms adapted to the chosen route of administration, i.e., orally or
parenterally, by intravenous, intramuscular, topical or subcutaneous routes.
[0018] Thus, the present compounds may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or
soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient’s
diet. For oral therapeutic administration, the compound may be combined with one or more excipients and used in the
form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such
compositions and preparations should contain at least 0.1% of the compound. The percentage of the compositions and
preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given
unit dosage form. The amount of compound in such therapeutically useful compositions is such that an effective dosage
level will be obtained.
[0019] The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth,
acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato
starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose,
fructose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be
added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier,
such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise
modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin,
wax, shellac or sugar and the like. A syrup or elixir may contain the compound, sucrose or fructose as a sweetening
agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any
material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in
the amounts employed. In addition, the compound may be incorporated into sustained-release preparations and devices.
[0020] The present compounds may also be administered intravenously or intraperitoneally by infusion or injection.
Solutions of a compound or its salts can be prepared in water, optionally mixed with a nontoxic surfactant. Dispersions
can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary
conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
[0021] The pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or
dispersions or sterile powders comprising a labeled or unlabeled compound of formula I adapted for the extemporaneous
preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. In all cases,
the ultimate dosage form must be sterile, fluid and stable under the conditions of manufacture and storage. The liquid
carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for
example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters,
and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the
maintenance of the required particle size in the case of dispersions or by the use of surfactants. The prevention of the
action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens,
chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents,
for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought
about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
[0022] Sterile injectable solutions are prepared by incorporating the compound in the required amount in the appropriate
solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization. In the case
of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum
drying and the freeze drying techniques, which yield a powder of the labeled or unlabled compound of formula (I) plus
any additional desired ingredient present in the previously sterile-filtered solutions.
[0023] For topical administration, the present compounds may be applied in pure form, i.e., when they are liquids.
However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination
with a dermatologically acceptable carrier, which may be a solid or a liquid.
[0024] Useful dosages of the compounds of formula I can be determined by comparing their in vitro activity, and in
vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans
are known to the art; for example, see U.S. Pat. No. 4,938,949.
[0025] Generally, the concentration of the compound(s) of formula I in a liquid composition, such as a lotion, will be
from about 0.1-25 wt-%, preferably from about 0.5-10 wt-%. The concentration in a semi-solid or solid composition such
5
EP 0 888 345 B1
5
10
15
20
25
30
35
40
as a gel or a powder will be about 0.1-5 wt-%, preferably about 0.5-2.5 wt-%. Single dosages for injection, infusion or
ingestion will generally vary between 50-1500 mg, and may be administered, i.e., 1-3 times daily, to yield levels of about
0.5 - 50 mg/kg, for adults.
[0026] Accordingly, the invention includes a pharmaceutical composition comprising a labeled or unlabeled compound
of formula I as described hereinabove; or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable
diluent or carrier.
[0027] Compounds of formula (I) can be labeled using any of a number of techniques which are well known in the art.
For example, a radioisotope can be incorporated into said compound or appended to said compound of formula (I) using
techniques well known in the art, for example, techniques analogous to those described in Arthur Murry III, D. Lloyd
Williams; Organic Synthesis with Isotopes, vol. I and II, Interscience Publishers Inc., N.Y. (1958) and Melvin Calvin et
al. Isotopic Carbon John Wiley and Sons Inc., N.Y. (1949). Preferably, a compound of formula (I) may be labeled by
appending a radioisotope of a halogen to the aromatic ring comprising DEF.
[0028] Additionally, a compound of formula (I) can be labeled with a metal chelating group optionally comprising a
radionuclide, such as a metallic radioisotope. Such chelating groups are well known in the art and include polycarboxylic
acids such as for example diethylenetriaminepentaacetic acid, ethylenediaminetetraacetic acid, and the like, or analogs
or homologs thereof, as well as the chelating groups disclosed in S. Meegalla et al. J. Am. Chem. Soc. 117 11037-11038,
1995 and in S. Meegalla et al. Bioconjugate Chem. 7:421-429, 1996.
The chelating group or the radionuclide therein may be attached directly to a compound of formula (I), or may be attached
to a compound of formula (I) by means of a divalent or bifunctional organic linker group. Such bifunctional linker groups
are well known in the art and are preferably less than 50 angstroms in length.
Examples of suitable linker groups include 2-aminoethyl, 2-mercaptoethyl, 2-aminopropyl, 2-mercaptopropyl, ∈-amino
caproic acid, 1,4-diaminobutane, and the like. Preferably, the bifunctional linker group is attached to a compound of
formula (I) at the bridgehead nitrogen which is substituted by the group R in formula (I). A compound of formula (I)
bearing a linker group may conveniently be prepared from a compound of formula (I) wherein R is hydrogen by alkylation
of the bridgehead nitrogen. Suitable conditions for the alkylation of secondary amines are well known in the art. The
linker group may also be attached at any synthetically feasible position. For example, Figure 3 shows two compounds
of the invention (compounds V and VI) which are compounds of formula (I), labeled with a metal chelating group comprising
a radionuclide (M).
[0029] Any metallic radioisotope capable of being detected in a diagnostic procedure can be employed as a radionuclide. For example, suitable radioisotopes include: Antimony-124, Antimony-125, Arsenic-74, Barium-103, Barium-140,
Beryllium-7, Bismuth-206, Bismuth-207, Cadmium-109, Cadmium-115m, Calcium-45, Cerium-139, Cerium-141, Cerium144, Cesium-137, Chromium-51, 152, Gadolinium-153, Gold-195, Gold-199, Hafnium-175, Hafnium-175-181, Indium111, Iridium-192, Iron-55, Iron-59, Krypton-85, Lead-210, Manganese-54, Mercury-197, Mercury-203, Molybdenum-99,
Neodymium-147, Neptunium-237, Nickel-63, Niobium-95, Osmium-185 + 191, Palladium-103, Platinum-195m, Praseodymium-143, Promethium-147, Protactinium-233, Radium-226, Rhenium-186, Rubidium-86, Ruthenium-103, Ruthenium-106, Scandium-44, Scandium-46, Selenium-75, Silver-110ml, Silver-111, Sodium-22, Strontium-85, Strontium-89,
Strontium-90, Sulfur-35, Tantalum-182, Technetium-99m, Tellurium-125, Tellurium-132, Thallium-204, Thorium-228,
Thorium-232, Thallium-170, Tin-113, Titanium-44, Tungsten-185, Vanadium-48, Vanadium-49, Ytterbium-169, Yttrium88, Yttrium-90, Yttrium-91, Zinc-65, and Zirconium. Preferably, technetium-99m may be useful for SPECT imaging
studies, and rhenium-188, rhenium-186, copper-64 and yitrium-90 may be useful for radiotherapy of breast tumors.
[0030] The invention will be further described by reference to the following detailed examples.
Example 1
45
50
[0031] In this study, the expression of σ2 receptors on proliferative (P) and quiescent (Q) cells of the mouse mammary
adenocarcinoma line, 66, was examined. Scatchard analyses of σ2 receptors were performed on membrane preparations
from 66 P (3 day cultures) and 66 Q (7, 10, 12 day cultures) cells. Cell membranes (30 Pg protein) were incubated with
4 nM [3H] 1,3-di-o-tolylguanidine ([3H]DTG) and varying amounts of unlabeled DTG (0.1-1000 nM) in the presence of
100 nM (+)-pentazocine, which masks σ1 receptors. The Scatchard studies revealed that P cells had about three times
more σ2 receptors/cell than the 7 day Q cells and about 10 times more σ2 receptors/cell than the 10 day Q cells. Therefore,
although > 97% of the cells were quiescent after 7 days in culture (Cell Tissue Kinet, 17, 65, (1984)), the maximum
differential in the σ2 expression between 66 P and Q cells was not attained until these cells had been in culture for 10
days (see Table 1).
55
6
EP 0 888 345 B1
receptors/cell
Kd S.E.M.
5
receptors/cell
Kd S.E.M.
10
Table 1
7 Day Cells
P cells
Q cells
5.10 x 105
1.8 x 105
56.3 7.3 41.6 4.3
10 Day Cells
P cells
Q cells
8.40 x 105 8.80 x 104
43.8 8.1 34.0 7.2
P:Q ratio
2.8
-P:Q ratio
9.8
--
[0032] The difference in receptors/cell between the 7 day and 10 day Q cells indicate that prolonged quiescence
results in a down regulation of σ2 receptors.
15
Example 2
(3-endo)-9-Benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(3’,4’-dichlorophenyl)-carbamate (2)
20
25
[0033] A mixture of (3-endo)-9-benzyl-9-azabicyclo[3.3.1]nonanol (100 mg, 0.43 mmol) and the 3,4-dichlorophenyl
isocyanate (78 mg, 0.43 mmol) in dry toluene (10 mL) was heated under reflux for 2 hours. After cooling, the organic
solution was made alkaline with saturated sodium bicarbonate solution and then extracted with chloroform (3 x20 mL).
The organic layers were combined and dried with sodium sulfate. The solvent was removed under vacuum and the
residue crystallized from pentane/ethylacetate to give the title compound.
[0034] NMR (CDCl3) δ 1.14-1.58 (m, 4H), 1.92-2.15 (m, 4H), 2.42-2.52 (m, 2H), 3.01-3.07 (d, ∆J = 21 Hz, 2H), 3.80
(s, 2H), 5.20-5.29 (p, 1H), 6.58 (s, 1H), 7.13-7.65 (m, 8H).
Example 3
30
35
[0035] A mixture of (3-endo)-9-benzyl-9-azabicyclo[3.3.1]nonanol (100 mg, 0.43 mmol) and the 2,5 dimethoxyphenyl
isocyanate (78 mg, 0.43 mmol) in dry toluene (10 mL) was heated under reflux for 2 hours. After cooling, the organic
solution was made alkaline with saturated sodium bicarbonate solution and then extracted with chloroform (3 x20 mL).
The organic layers were combined and dried with sodium sulfate. The solvent was removed under vacuum and the
residue crystallized from pentane/ethylacetate to give the title compound.
[0036] NMR (CDCl3) δ 1.41-2.18 (m, 8H), 2.42-2.52 (m, 2H), 2.99-3.04 (d, ∆J = 15 Hz, 2H), 3.83 (s, 3H), 3.80 (s, 2H),
3.75 (s, 3H). 5.21-5.30 (p, 1H), 6.49-7.36 (m, 8H), 7.85 (br s, 1H).
Example 4
40
45
50
(3-endo)-9-Benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(5’-chloro-2’,4’-dimethoxyphenyl)carbamate (4)
[0037] A mixture of (3-endo)-9-benzyl-azabicyclo[3.3.1]nonanol (100 mg, 0.43 mmol) and the 5-chloro-2,4-dimethoxyphenyl isocyanate (91.85 mg, 0.43 mmol) in dry dichloromethane (10 mL) was stirred with dibutyltin diacetate (2 drops)
for 12 hours. The organize solution was concentrated to dryness under vacuum. The resulting glassy oil was chromatographed on silica gel with EtOAc: hexane: triethylamine 1:1:0.02. The solvent was removed under vacuum and the
residue crystallized from pentane/EtOAc to give the title compound.
[0038] NMR (CDCl3) δ 1.45-2.22 (m, 8H), 2.50-2.55 (m, 2H), 3.01-3.06 (d, DJ = 15 Hz, 2H). 3.84 (s, 3H), 3.82 (s, 2H),
3.75 (s, 3H), 5.24-5.30 (p, 1H), 6.97-7.36 (m, 7H), 8.04 (br s, 1H).
Example 5
(3-endo)-9-Benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(2’-chloro-5’-methoxyphenyl)carbamate (5)
55
[0039] A mixture of (3-endo)-9-benzyl-9-azabicyclo[3.3.1]nonanol (100 mg, 0.43 mmol) and the 5-chloro-2-methoxyphenyl isocyante (78.94 mg, 0.43 mmol) in dry dichloromethane (10 mL) was stirred with dibutyltin diacetate (2 drops)
for 12 hours. The organic solution was concentrated to dryness under vacuum. The resulting glassy oil was chromatographed on silica gel with EtOAc:hexane: triethylamine 1:1:0.02. The solvent was removed under vacuum and the residue
crystallized from pentane/EtOAc to give the title compound.
7
EP 0 888 345 B1
[0040] NMR (CDCl3) δ 1.39-2.18 (m, 8H), 2.42-2.53 (m, 2H), 2.99-3.03 (d, DJ =15 Hz, 2H), 3.83 (s, 3H), 3.81 (s, 2H),
5.24-5.32 (p, 1H), 6.75-7.21 (m, 8H), 8.14 (br s, 1H).
Example 6
5
(3-endo)-8-Benzyl-8-azabicyclo[3.2.1]octyl-3-N-(2’,5’-dimethoxyphenyl)-carbamate (6)
10
[0041] A mixture of (3-endo)-8-benzyl-8-azabicyclo[3.2.1]octanol (100 mg, 0.46 mmol) and the 2,5-dimethoxyphenyl
isocyante (82 mg, 0.46 mmol) in dry dichloromethane (10 mL) was stirred with dibutyltin diacetate (2 drops) for 12 hours.
The organic solution was concentrated to dryness under vacuum. The resulting glassy oil was chromatographed on
silica gel with EtOAc: hexane: triethylamine 1:1:0.02. The solvent was removed under vacuum and the residue crystallized
from pentane/EtOAc to give the title compound.
[0042] NMR (CDCl3) d 1.80-3.22 (m, 8H), 3.64 (br s, 2H), 3.72 (s, 3H), 3.82 (s, 3H), 4.05 (s, 2H), 5.22-5.32 (m, 1H),
6.64-7.40 (m, 8H), 8.14 (br s, 1H).
15
Example 7
(3-endo)-8-Benzyl-8-azabicyclo[3.2.1]octyl-3-N-(3’,4’-dichlorophenyl)-carbamate (7)
20
25
[0043] A mixture of (3-endo)-8-benzyl-8-azabicyclo[3.2.1.]octanol (100 mg, 0.46 mmol) and the 3,4-dichlorophenyl
isocyanate (86 mg, 0.46 mmol) in dry dichloromethane (10 mL) was stirred with dibutyltin diacetate (2 drops) for 12
hours. The organic solution was concentrated to dryness under vacuum. The resulting glassy oil was chromatographed
on silica gel with EtOAc: hexane: triethylamine 1:1:0.02. The solvent was removed under vacuum and the residue
crystallized from pentane/EtOAc to give the title compound.
[0044] NMR (CDCl3) δ 1.79-3.20 (m, 8H), 3.66 (br s, 2H), 3.72 (s, 3H), 3.83 (s, 3H), 4.05 (s, 2H), 5.19-5.30 (m, 1H),
7.22-7.81 (m, 8H), 8.24 (br s, 1H).
Example 8
30
[0045] The ability of the above compounds to bind selectively to σ2 receptors can be demonstrated by measuring their
affinities to sigma receptors using known receptor binding assays (Mach et al., Life Sciences, 57, PL57-62 (1995)).
Example 9
35
Pharmacological Studies
A. Sigma Receptor Binding
40
[0046] Sigma-1 binding sites were labeled with the σ1-selective radioligand, [3H](+)-pentazocine (Dupont-NEN) in
guinea pig brain membranes (Rockland Biological). Sigma-2 sites were assayed in rat liver membranes with [3H]DTG
(Dupont-MEN) in the presence of (+)-pentazocine (100 nM). Sigma-2 site were also assayed in guinea pig membranes
with [3H]DTG in the presence of (+)-pentazocine (100 nM).
B. σ1 Binding Assay
45
50
[0047] Guinea pig brain membranes (100 Pg protein) were incubated with 3 nM [3H](+)-pentazocine (31.6 Ci/mmol)
in 50 mm Tris-HCl, pH 8.0 at 25°C for either 120 or 240 minutes. Test compounds were dissolved in ethanol (7 concentrations ranging from 1-1000 nM) then diluted in buffer for a total incubation volume of 0.5 mL. Assays were terminated
by the addition of ice-cold 10 mM Tris HCl, pH 8.0 followed by rapid filtration through Whatman GF/B glass fiber filters
(presoaked in 0.5% polyethylenimine) using a Brandel cell harvester (Gaithersburg, MD). Filters were washed twice with
5 mL of ice cold buffer. Nonspecific binding was determined in the presence of 10 PM (+)-pentazocine. Liquid scintillation
counting was carried ont in EcoLite (+) (ICN Radiochemicals; Costa Mesa, CA) using a Beckman LS 6000IC spectrometer
with a counting efficiency of 50%. Typical counts were 70 dpm/Pg protein for total binding, 6 dpm/Pg protein for nonspecific
binding, and 64 dpm/Pg protein for specific binding.
55
C. σ2 Binding Assay
[0048]
Rat liver membranes (35 Pg of protein) or guinea pig brain membranes (360 Pg) were incubated with 3 nM
8
EP 0 888 345 B1
5
10
[3H]DTG (38.3 Ci/mmol) in the presence of 100 nM (+)-pentazocine to mask σ1 sites. Incubations were carried out using
the compound of Exs. 2-5 and the competitive antagonist (7 different concentrations ranging from 1-1000 nM) in 50 mM
Tris-HCl, pH 8.0 for 120 minutes at 25°C in a total incubation volume of 0.5 mL. Assays were terminated by the addition
of ice-cold 10 mM Tris-HCl, pH 8.0 followed by rapid filtration through Whatman GF/B glass fiber filters (presoaked in
0.5% polyethylenimine) using a Brandel cell harvester (Gaithersburg, MD). Filters were then washed twice with 5 mL of
ice cold buffer Nonspecific binding was determined in the presence of 5 PM DTG. Liquid scintillation counting was carried
out in EcoLite(+) (ICN Radiochemicals; Costa Mesa, CA) using a Beckman LS 6000IC spectrometer with a counting
efficiency of 50%. Typical counts for rat liver were 297 dpm/Pg protein for total binding, 11 dpm/Pg protein for nonspecific
binding, and 286 dpm/Pg protein for specific binding. Typical counts for guinea pig brain were 16 dpm/Pg protein for
total binding, 2 dpm/Pg protein for nonspecific binding, and 14 dpm/Pg protein for specific binding.
D. Data Analysis
15
20
[0049] The IC50 values at sigma sites were determined in triplicate from nonlinear regression of binding data as
analyzed by JMP (SAS Institute; Cary, NC), using 5-10 concentrations of each compound. Ki values were calculated
using the Cheng-Prusoff equation and represent mean values SEM. All assays were done in triplicate unless otherwise
noted. The Kd value used for [3H]DTG in rat liver was 17.9 nM and was 4.8 nM for [3H](+)-pentazocine in guinea pig
brain. The Kd value for [3H]DTG in guinea pig brain was determined by separate Scatchard analyses to be 21.6 nM.
E. Results
[0050]
The in vitro binding data for compounds described in this patent application are shown in Table 2.
Table 2.
25
Ki[nM]
Compound 2
Compound 3
Compound 4
Compound 5
Compound 6
Compound 7
30
σ1
σ2
33.3
329.1
189
> 1000
72.4
716
91.9
28.2
22.9
63.5
22.1
16.2
35
40
[0051] Generally compounds of the invention demonstrate high selectivity for σ2 versus σ1 receptors.
[0052] It is believed that compounds of formula I can provide detectably labeled ligands that can selectively bind to
carrier cells and can be quantified by using functional imaging techniques such as positron emission tomography (PET),
single photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI). Said components have the potential to noninvasively assess the proliferative status of known or suspected tumor cells or cells
subject to hyperplasia, in bladder, colon, prostate, breast, lung, gut, pancreas, reproductive system, brain and the like.
The labeled compounds of formula (I) can also be used to treat cancer or abnormally dividing cells, by selectively inhibiting
their proliferation.
45
Claims
1.
A compound of formula (I):
50
55
9
EP 0 888 345 B1
5
10
15
wherein
R is C6F5CH2, and T-C6H4CH2 wherein T is halo, CH3tS, CH3O, NH2 or H;
A is NH, O or S;
B is NH, O or S;
G is O or S;
D is CH or N;
E is CH or N;
F is CH or N;
Y and Z are individually H, halo, OH, (C1-C4)alkyl, (C1-C4)alkoxy, (C1-C4)alkylC(O), (C1-C4)alkyl S, NH2, SH,
N(R)2 or together are OCH2O, wherein said alkyl can be straight, branched, Cycloalkyl or (cycloalkyl)alkyl; and
X is (CH2)2, (CH2)3 or CH=CH;
20
25
30
or a pharmaceutically acceptable salt thereof.
35
2.
A compound according to claim 1 wherein A is O or S.
3.
A compound according to claim 1 wherein G is S.
4.
A compound according to claim 1 wherein D is CH.
5.
A compound according to claim 1 wherein E is CH.
6.
A compound according to claim 1 wherein Y and Z are individually H, halo, OH, (C1-C4)alkyl, (C1-C4)alkylC(O),
(C1-C4)alkylS, NH2, SH, N(R)2 or together are OCH2O.
7.
A compound according to claim 1 wherein X is (CH2)3 or CH=CH.
8.
A compound according to claim 1 wherein Y and Z are both (C1-C4)alkoxy.
9.
A compound according to claim 1 wherein D is N.
40
45
50
10. A compound according to claim 1 wherein E is N.
11. A compound according to claim 1 wherein F is N.
12. A compound according to claim 1 wherein Y and Z are H.
55
13. A compound according to claim 1 selected from the group consisting of:
(3-endo)-9-benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(3’,4’-dichlorophenyl)-carbamate;
10
EP 0 888 345 B1
(3-endo)-9-benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(2’,5’-dimethoxyphenyl)-carbamate;
(3-endo)-9-benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(2’-chloro-5’-methoxyphenyl)carbamate;
(3-endo)-8-benzyl-8-azabicyclo[3.2.1]octyl-3-N-(2’,5’-dimethoxyphenyl)-carbamate; or
(3-endo)-8-benzyl-8-azabicyclo[3.2.1]octyl-3-N-(3’,4’-dichlorophenyl)-carbamate;
5
or a pharmaceutically acceptable salt thereof;
or a detectably-labeled derivative of the selected compound or of its pharmaceutically acceptable salt, wherein the
label comprises a radionuclide.
10
14. A compound according to claim 13 which is (3-endo)-9-benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(2’,5’-dimethoxyphenyl)-carbamate.
15. A compound according to claim 1 wherein
15
20
25
R is benzyl;
A is O;
B is NH;
G is O;
E is CH;
F is CH;
Y and Z are each methoxy
X is (CH2)3;
and further including an additional substituent on the phenyl ring, wherein the compound is (3-endo)-9-Benzyl-9azabicyclo[3.3.1]nonanyl-3-N-(5’-chloro-2’,4’-dimethoxyphenyl)carbamate.
16. A compound according to claim 1 or any one of claims 9 to 12 wherein said compound or its pharmaceutically
acceptable salt is detectably labeled and wherein the label comprises a radionuclide.
30
17. A compound of claim 16 wherein E, D and F are CH.
18. A compound of claim 16 wherein B is NH and A is O.
19. A compound of claim 16 wherein Y and Z are halo.
35
20. A compound of claim 16 wherein Y and Z are OCH3.
21. A compound of claim 16 wherein R is benzyl or CH3.
40
45
50
22. A compound according to claim 16 wherein alkyl can be straight chained, branched, cycloalkyl or (cycloalkyl)alkyl;
and which compound is detectably-labeled by appending a radioisotope of a halogen to the aromatic ring comprising
DEF; or a pharmaceutically acceptable salt thereof.
23. A compound according to claim 16 wherein alkyl can be straight chained, branched, cycloalkyl, or (cycloalkyl)alkyl;
and which compound is detectably-labeled with a metal chelating group comprising a radionuclide; or a pharmaceutically acceptable salt thereof.
24. The compound of claim 23 wherein the metal chelating group is attached directly to a compound of formula (I), or
the metal chelating group is attached to a compound of formula (I) by means of a divalent or bifunctional organic
linker group.
25. The compound of claim 24 wherein the bifunctional linker group is 2-aminoethyl, 2-mercaptoethyl, 2-aminopropyl,
2-mercaptopropyl, e-amino caproic acid, or 1,4-diaminobutane.
55
26. The compound of claim 23 wherein the radionuclide is a metallic radioisotope.
27. The compound of claim 24 wherein the bifunctional linker group is less than 5 nm (50 angstroms) in length.
11
EP 0 888 345 B1
28. A pharmaceutical composition comprising a compound of any one of claims 1-21; and a pharmaceutically acceptable
diluent or a pharmaceutically acceptable carrier.
5
29. A pharmaceutical composition comprising a compound of any one of claims 22 to 27 and a pharmaceutically acceptable carrier.
30. A method for determining the proliferative status of a tumour comprising:
(a) contacting in vitro a cell sample of the tumour with an amount of a detectably labeled compound of formula (I):
10
15
20
25
30
35
40
wherein the label comprises a radionuclide and
R is C6F5CH2, and T-CH4CH2 wherein T is halo, CH2S, CH3O, NH2 or H;
A is NH, O or S;
B is NH, O or S;
G is O or S;
D is CH or N;
E is CH or N;
F is CH or N;
Y and Z are individually H, halo, OH, (C1-C4)alkyl, (C1-C4)alkoxy, (C1-C4)alkylC(O), (C1-C4)alkylS, NH2,
SH, N(R)2 or together are OCH2O, wherein said alkyl can be straight, branched, cycloalkyl or (cycloalkyl)
alkyl;
X is (CH2)2, (CH2)3 or CH=CH;
or a pharmaceutically acceptable salt thereof; and
(b) determining the extent to which the compound of formula (I) binds to the cells of said tumour, said extent
providing a measure of the proliferative status of said tumour.
31. The method of claim 30 wherein E, D and F are CH.
45
32. The method of claim 30 wherein B is NH and A is O.
33. The method of claim 30 wherein Y and Z are halo.
50
34. The method of claim 30 wherein Y and Z are OCH3.
35. The method of claim 30 wherein R is benzyl.
36. A method for determining in vitro the proliferative status of a tumour that comprises cells that express sigma-2
receptors, comprising:
55
(a) contacting the tumour cells in vitro with a detectably labeled sigma-2 ligand, wherein the label comprises a
radionuclide, and
(b) determining the extent to which the ligand binds to the cells, whereby the extent provides a measure of the
12
EP 0 888 345 B1
proliferative status of the tumour characterized in that the detectably-labeled sigma-2 ligand is a compound
according to claim 16, or a pharmaceutically acceptable salt thereof.
5
37. The method of claim 36 wherein the cell sample is taken from a tumour located in the bladder, colon, prostate,
breast, lung, gut, pancreas, reproductive system, or brain.
38. A compound as claimed in any one of claims 1 to 27 for the treatment of a solid tumour in a human.
39. A pharmaceutical composition as claimed in claim 28 or claim 29 for the treatment of a solid tumour in a human.
10
40. A detectably labeled compound as claimed in any one of claims 1 to 27 for identifying the presence of a solid tumour
in a human subject, wherein the label comprises a radionuclide.
15
41. A detectably labeled pharmaceutical composition as claimed in claim 28 or claim 29 for identifying the presence of
a solid tumour in a human subject, wherein the label comprises a radionuclide.
42. Compounds as claimed in any one of claims 1 to 27 for use as an active therapeutic substance or as an aid to diagnosis.
20
Patentansprüche
1.
Verbindung der Formel (I):
25
30
35
worin
40
R C6F5CH2 und T-C6H4CH2 ist, wobei T Halogen, CH3S, CH3O, NH2 oder H ist;
A NH, O oder S ist;
B NH, O oder S ist;
G O oder S ist;
D CH oder N ist;
E CH oder N ist;
F CH oder N ist;
Y und Z unabhängig voneinander H, Halogen OH, (C1-C4)Alkyl, (C1-C4)Alkoxy, (C1-C4)AlkylC(O), (C1-C4)AlkylS,
NH2, SH, N(R)2 oder zusammen OCH2O sind, wobei das Alkyl geradkettig, verzweigt, ein Cycloalkyl oder ein
(Cycloalkyl)alkyl sein kann; und
X (CH2)2, (CH2)3 oder CH=CH ist;
45
50
oder ein pharmazeutisch geeignetes Salz davon.
55
2.
Verbindung nach Anspruch 1, worin A O oder S ist.
3.
Verbindung nach Anspruch 1, worin G S ist.
13
EP 0 888 345 B1
5
10
4.
Verbindung nach Anspruch 1, worin D CH ist.
5.
Verbindung nach Anspruch 1, worin E CH ist.
6.
Verbindung nach Anspruch 1, worin Y und Z unabhängig voneinander H, Halogen OH, (C1-C4)Alkyl, (C1-C4)Alkoxy,
(C1-C4)AlkylC(O), (C1-C4)AlkylS, NH2, SH, N(R)2 oder zusammen OCH2O sind.
7.
Verbindung nach Anspruch 1, worin X (CH2)3 oder CH=CH ist.
8.
Verbindung nach Anspruch 1, worin sowohl Y als auch Z (C1-C4)Alkoxy sind.
9.
Verbindung nach Anspruch 1, worin D N ist.
10. Verbindung nach Anspruch 1, worin E N ist.
15
11. Verbindung nach Anspruch 1, worin F N ist.
12. Verbindung nach Anspruch 1, worin Y und Z oder H ist.
20
25
30
13. Verbindung nach Anspruch 1, ausgewählt aus der Gruppe, die aus folgenden Verbindungen besteht:
(3-endo)-9-Benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(3’,4’-dichlorphenyl)carbamat;
(3-endo)-9-Benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(2’,5’-dimethoxyphenyl)carbamat;
(3-endo)-9-Benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(2’-chlor-5’-methoxyphenyl)carbamat;
(3-endo)-8-Benzyl-8-azabicyclo[3.2.1]octyl-3-N-(2’,5’-dimethoxyphenyl)carbamat; oder
(3-endo)-8-Benzyl-8-azabicyclo[3.2.1]octyl-3-N-(3’,4’-dichlorphenyl)carbamat;
oder ein pharmazeutisch geeignetes Salz davon;
oder ein nachweisbar markiertes Derivat der ausgewählten Verbindung oder ihres pharmazeutisch geeigneten
Salzes, wobei die Markierung ein Radionuklid umfasst.
14. Verbindung nach Anspruch 13, die (3-endo)-9-Benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(2’,5’-dimethoxyphenyl)carbamat ist.
35
40
45
15. Verbindung nach Anspruch 1, worin
R Benzyl ist;
A O ist;
B NH ist;
G O ist;
E CH ist;
F CH ist;
Y und Z jeweils Methoxy sind;
X (CH2)3 ist;
und die außerdem einen zusätzlichen Substituenten auf dem Phenylring umfasst, wobei die Verbindung (3-endo)9-Benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(5’-chlor-2’,4’-dimethoxyphenyl)carbamat ist.
50
16. Verbindung nach Anspruch 1 oder einem der Ansprüche 9 bis 12, wobei die Verbindung oder ihr pharmazeutisch
geeignetes Salz nachweisbar markiert ist und wobei die Markierung ein Radionuklid umfasst.
17. Verbindung nach Anspruch 16, worin E, D und F CH sind.
18. Verbindung nach Anspruch 16, worin B NH und A O ist.
55
19. Verbindung nach Anspruch 16, worin Y und Z Halogen sind.
20. Verbindung nach Anspruch 16, worin Y und Z OCH3 sind.
14
EP 0 888 345 B1
21. Verbindung nach Anspruch 16, worin R Benzyl oder CH3 ist.
5
22. Verbindung nach Anspruch 16, wobei Alkyl geradkettig, verzweigt, ein Cycloalkyl oder ein (Cycloalkyl)alkyl sein
kann; und wobei die Verbindung dadurch nachweisbar markiert ist, dass ein Radioisotop eines Halogens an den
aromatischen Ring, der DEF umfasst, angehängt ist; oder ein pharmazeutisch geeignetes Salz davon.
23. Verbindung nach Anspruch 16, wobei Alkyl geradkettig, verzweigt, ein Cycloalkyl oder ein (Cycloalkyl)alkyl sein
kann; und wobei die Verbindung mit einer Metallchelatisierungsgruppe, die ein Radionuklid umfasst, nachweisbar
markiert ist; oder ein pharmazeutisch geeignetes Salz davon.
10
24. Verbindung nach Anspruch 23, wobei die Metallchelatisierungsgruppe direkt an eine Verbindung der Formel (I)
gebunden ist oder die Metallchelatisierungsgruppe an eine Verbindung der Formel (I) mittels einer zweiwertigen
oder bifunktionellen organischen Linkergruppe angehängt ist.
15
25. Verbindung nach Anspruch 24, wobei die bifunktionelle Linkergruppe 2-Aminoethyl, 2-Mercaptoethyl, 2-Aminopropyl, 2-Mercaptopropyl, e-Aminocapronsäure oder 1,4-Diaminobutan ist.
26. Verbindung nach Anspruch 23, wobei das Radionuklid ein metallisches Radioisotop ist.
20
27. Verbindung nach Anspruch 24, wobei die bifunktionelle Linkergruppe eine Länge von weniger als 5 nm (50 Angström)
aufweist.
28. Arzneimittelzusammensetzung, die eine Verbindung nach einem der Ansprüche 1 bis 21 und ein pharmazeutisch
geeignetes Verdünnungsmittel oder einen pharmazeutisch geeigneten Träger umfasst.
25
29. Arzneimittelzusammensetzung, die eine Verbindung nach einem der Ansprüche 22 bis 27 und einen pharmazeutisch
geeigneten Träger umfasst.
30. Verfahren zum Bestimmen des Proliferationszustandes eines Tumors, welches umfasst:
30
(a) das in-vitro-Kontaktieren einer Zellprobe des Tumors mit einer Menge einer nachweisbar markierten Verbindung der Formel (I):
35
40
45
50
55
wobei die Markierung ein Radionuklid enthält und R C6F5CH2 und T-C6H4CH2 ist, wobei T Halogen, CH3S,
CH3O, NH2 oder H ist;
A NH, O oder S ist;
B NH, O oder S ist;
G O oder S ist;
D CH oder N ist;
E CH oder N ist;
F CH oder N ist;
Y und Z unabhängig voneinander H, Halogen OH, (C1-C4)Alkyl, (C1-C4)Alkoxy, (C1-C4)AlkylC(O), (C1-C4)
AlkylS, NH2, SH, N(R)2 oder zusammen OCH2O sind, wobei das Alkyl geradkettig, verzweigt, ein Cycloalkyl
15
EP 0 888 345 B1
oder ein (Cycloalkyl)alkyl sein kann;
X (CH2)2, (CH2)3 oder CH=CH ist;
oder ein pharmazeutisch geeignetes Salz davon; und
(b) das Bestimmen des Ausmaßes der Bindung der Verbindung der Formel (I) an die Zellen des Tumors, wobei
das Ausmaß ein Maß für den Proliferationszustand des Tumors angibt.
5
31. Verfahren nach Anspruch 30, wobei E, D und F CH sind.
10
32. Verfahren nach Anspruch 30, wobei B NH und A O ist.
33. Verfahren nach Anspruch 30, wobei Y und Z Halogen sind.
15
34. Verfahren nach Anspruch 30, wobei Y und Z OCH3 sind.
35. Verfahren nach Anspruch 30, wobei R Benzyl ist.
36. Verfahren zur in vitro Bestimmung des Proliferationszustandes eines Tumors, der sigma-2-Rezeptoren exprimierende Zellen enthält, welches umfasst:
20
(a) Kontaktieren der Tumorzellen in vitro mit einem nachweisbar markierten sigma-2-Liganden, wobei die Markierung ein Radionuklid umfasst, und
(b) Bestimmen des Ausmaßes der Bindung des Liganden an die Zellen, wobei das Ausmaß ein Maß für den
Proliferationszustand des Tumors ist, dadurch gekennzeichnet, dass der nachweisbar markierte sigma-2Ligand eine Verbindung nach Anspruch 16 oder ein pharmazeutisch geeignetes Salz davon ist.
25
37. Verfahren nach Anspruch 36, wobei die Zellprobe aus einem in der Blase, dem Dickdarm, der Prostata, der Brust,
der Lunge, dem Darm, der Bauchspeicheldrüse, dem Fortpflanzungssystem oder dem Gehirn befindlichen Tumor
entnommen ist.
30
38. Verbindung nach einem der Ansprüche 1 bis 27 zur Behandlung eines festen Tumors in einem Menschen.
39. Arzneimittelzusammensetzung nach Anspruch 28 oder 29 zur Behandlung eines festen Tumors in einem Menschen.
35
40. Nachweisbar markierte Verbindung nach einem der Ansprüche 1 bis 27 zum Identifizieren der Anwesenheit eines
festen Tumors in einem Menschen, wobei die Markierung ein Radionuklid enthält.
41. Nachweisbar markierte Arzneimittelzusammensetzung nach einem der Ansprüche 28 oder 29 zum Identifizieren
der Anwesenheit eines festen Tumors in einem Menschen, wobei die Markierung ein Radionuklid umfasst.
40
42. Verbindungen nach einem der Ansprüche 1 bis 27 für die Verwendung als aktive therapeutische Substanz oder als
Hilfsmittel in der Diagnose.
45
Revendications
1.
Composé de formule (I) :
50
55
16
EP 0 888 345 B1
5
10
dans laquelle
15
R représente un groupe C6F5CH2, et T-C6H4CH2 dans lequel T représente un groupe halogéno, CH2S, CH3O,
NH2 ou H ;
A représente un groupe NH, O ou S ;
B représente un groupe NH, O ou S ;
G représente O ou S ;
D représente un groupe CH ou N ;
E représente un groupe CH ou N ;
F représente un groupe CH ou N ;
Y et Z représentent individuellement H, un groupe halogéno, OH, alkyle en C1 à C4, alkoxy en C1 à C4, (alkyle
en C1 à C4)C(O), (alkyle en C1 à C4)S, NH2, SH, N(R)2 ou bien représentent conjointement un groupe OCH2O,
où ledit groupe alkyle peut être un groupe droit, ramifié, cycloalkyle ou (cycloalkyl)alkyle ; et
X représente un groupe (CH2)2, (CH2)3 ou CH=CH ;
20
25
ou un de ses sels pharmaceutiquement acceptables.
30
35
2.
Composé suivant la revendication 1, dans lequel A représente O ou S.
3.
Composé suivant la revendication 1, dans lequel G représente S.
4.
Composé suivant la revendication 1, dans lequel D représente un groupe CH.
5.
Composé suivant la revendication 1, dans lequel E représente un groupe CH.
6.
Composé suivant la revendication 1, dans lequel Y et Z représentent individuellement un groupe H, halogéno, OH,
alkyle en C1 à C4, (alkyle en C1 à C4)C(O), (alkyle en C1 à C4)S, NH2, SH, N(R)2 ou bien, conjointement, représentent
un groupe OCH2O.
7.
Composé suivant la revendication 1, dans lequel X représente un groupe (CH2)3 ou CH=CH.
8.
Composé suivant la revendication 1, dans lequel Y et Z représentent tous deux un groupe alkoxy en C1 à C4.
9.
Composé suivant la revendication 1, dans lequel D représente N.
40
45
10. Composé suivant la revendication 1, dans lequel E représente N.
50
11. Composé suivant la revendication 1, dans lequel F représente N.
12. Composé suivant la revendication 1, dans lequel Y et Z représentent H.
55
13. Composé suivant la revendication 1, choisi dans le groupe consistant en :
le (3-endo)-9-benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(3’,4’-dichlorophényl)-carbamate ;
le (3-endo)-9-benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(2’,5’-diméthoxyphényl)-carbamate ;
17
EP 0 888 345 B1
le (3-endo)-9-benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(2’-chloro-5’-méthoxyphényl)-carbamate ;
le (3-endo)-8-benzyl-8-azabicyclo[3.2.1]octyl-3-N-(2’,5’-diméthoxyphényl)-carbamate ; et
le (3-endo)-8-benzyl-8-azabicyclo[3.2.1]octyl-3-N-(3’,4’-dichlorophényl)-carbamate ;
5
10
ou un de ses sels pharmaceutiquement acceptables ;
ou bien un dérivé marqué de manière détectable du composé choisi ou de son sel pharmaceutiquement acceptable,
dans lequel le marqueur comprend un radionucléide.
14. Composé suivant la revendication 13, qui le (3-endo)-9-benzyl-9-azabicyclo[3.3.1]nonanyl-3-N-(2’,5’-diméthoxyphényl)-carbamate.
15. Composé suivant la revendication 1, dans lequel
15
20
R représente un groupe benzyle ;
A représente O ;
B représente un groupe NH ;
G représente O ;
E représente un groupe CH ;
F représente un groupe CH ;
Y et Z représentent chacun un groupe méthoxy ;
X représente un groupe (CH2)3 ;
et comprenant en outre un substituant supplémentaire sur le noyau phényle, le composé étant le (3-endo)-9-benzyl9-azabicyclo[3.3.1]nonanyl-3-N-(5’-chloro-2’,4’-diméthoxyphényl)-carbamate.
25
16. Composé suivant la revendication 1 ou l’une quelconque des revendications 9 à 12, ledit composé ou son sel
pharmaceutiquement acceptable étant marqué de manière détectable et le marqueur comprenant un radionucléide.
17. Composé suivant la revendication 16, dans lequel E, D et F représentent des groupes CH.
30
18. Composé suivant la revendication 16, dans lequel B représente un groupe NH et A représente O.
19. Composé suivant la revendication 16, dans lequel Y et Z représentent des groupes halogéno.
35
20. Composé suivant la revendication 16, dans lequel Y et Z représentent des groupes OCH3.
21. Composé suivant la revendication 16, dans lequel R représente un groupe benzyle ou CH3.
40
45
50
22. Composé suivant la revendication 16, dans lequel le groupe alkyle peut être un groupe à chaîne droite, ramifié,
cycloalkyle ou (cycloalkyl)alkyle ; composé qui est marqué de manière détectable en fixant de manière appendue
un radio-isotope d’un halogène au noyau aromatique comprenant DEF ; ou un de ses sels pharmaceutiquement
acceptables.
23. Composé suivant la revendication 16, dans lequel le groupe alkyle peut être un groupe à chaîne droite, ramifié,
cycloalkyle ou (cycloalkyl)alkyle ; composé qui est marqué de manière détectable avec un groupe chélatant les
métaux comprenant un radionucléide ; ou un de ses sels pharmaceutiquement acceptables.
24. Composé suivant la revendication 23, dans lequel le groupe chélatant les métaux est fixé directement à un composé
de formule (I), ou le groupe chélatant les métaux est fixé à un composé de formule (I) au moyen d’un groupe de
liaison organique bivalent ou bifonctionnel.
25. Composé suivant la revendication 24, dans lequel le groupe de liaison bifonctionnel est un groupe 2-aminoéthyle,
2-mercaptoéthyle, 2-aminopropyle, 2-mercaptopropyle, acide ε-aminocaproïque ou 1,4-diaminobutane.
55
26. Composé suivant la revendication 23, dans lequel le radionucléide est un radio-isotope métallique.
27. Composé suivant la revendication 24, dans lequel le groupe de liaison bifonctionnel a une longueur inférieure à 5
nm (50 angströms).
18
EP 0 888 345 B1
28. Composition pharmaceutique comprenant un composé de l’une quelconque des revendications 1 à 21 ; et un diluant
pharmaceutiquement acceptable ou un support pharmaceutiquement acceptable.
5
29. Composition pharmaceutique comprenant un composé de l’une quelconque des revendications 22 à 27 ; et un
support pharmaceutiquement acceptable.
30. Méthode pour déterminer le statut prolifératif d’une tumeur, comprenant :
10
(a) la mise en contact in vitro d’un échantillon cellulaire de la tumeur avec une quantité d’un composé marqué
de manière détectable de formule (I) :
15
20
25
30
35
40
dans laquelle le marqueur comprend un radionucléide et
R représente un groupe C6F5CH2, et T-C6H4CH2 dans lequel T représente un groupe halogéno, CH2S,
CH3O, NH2 ou H ;
A représente un groupe NH, O ou S ;
B représente un groupe NH, O ou S ;
G représente O ou S ;
D représente un groupe CH ou N ;
E représente un groupe CH ou N ;
F représente un groupe CH ou N ;
Y et Z représentent individuellement H, un groupe halogéno, OH, alkyle en C1 à C4, alkoxy en C1 à C4,
(alkyle en C1 à C4)C(O), (alkyle en C1 à C4)S, NH2, SH, N(R)2 ou bien, conjointement, représentent un
groupe OCH2O, où ledit groupe alkyle peut être un groupe droit, ramifié, cycloalkyle ou (cycloalkyl)alkyle ; et
X représente un groupe (CH2)2, (CH2)3 ou CH=CH ;
ou d’un de ses sels pharmaceutiquement acceptables; et
(b) la détermination du degré auquel le composé de formule (I) se lie aux cellules de ladite tumeur, ledit degré
fournissant une mesure du statut prolifératif de ladite tumeur.
31. Méthode suivant la revendication 30, dans laquelle E, D et F représentent des groupes CH.
45
32. Méthode suivant la revendication 30, dans laquelle B représente un groupe NH et A représente O.
33. Méthode suivant la revendication 30, dans laquelle Y et Z représentent des groupes halogéno.
50
34. Méthode suivant la revendication 30, dans laquelle Y et Z représentent des groupes OCH3.
35. Méthode suivant la revendication 30, dans laquelle R représente un groupe benzyle.
55
36. Méthode pour la détermination in vitro du statut prolifératif d’une tumeur qui comprend des cellules qui expriment
les récepteurs sigma-2, comprenant :
(a) la mise en contact des cellules tumorales in vitro avec un ligand sigma-2 marqué de manière détectable,
dans lequel le marqueur comprend un radionucléide, et
19
EP 0 888 345 B1
(b) la détermination du degré auquel le ligand se lie aux cellules, ce degré fournissant ainsi une mesure du
statut prolifératif de la tumeur, caractérisée en ce que le ligand sigma-2 marqué de manière détectable est
un composé suivant la revendication 16 ou un de ses sels pharmaceutiquement acceptables.
5
37. Méthode suivant la revendication 36, dans laquelle l’échantillon de cellules est prélevé dans une tumeur située dans
la vessie, le côlon, la prostate, le sein, le poumon, l’intestin, le pancréas, le système reproducteur ou le cerveau.
38. Composé suivant l’une quelconque des revendications 1 à 27, destiné au traitement d’une tumeur solide chez un
être humain.
10
39. Composition pharmaceutique suivant la revendication 28 ou la revendication 29, destinée au traitement d’une tumeur
solide chez un être humain.
15
40. Composé marqué de manière détectable suivant l’une quelconque des revendications 1 à 27, destiné à l’identification
de la présence d’une tumeur solide chez un sujet humain, dans lequel le marqueur comprend un radionucléide.
41. Composition pharmaceutique marquée de manière détectable suivant la revendication 28 ou la revendication 29,
destinée à l’identification de la présence d’une tumeur solide chez un sujet humain, dans laquelle le marqueur
comprend un radionucléide.
20
42. Composés suivant l’une quelconque des revendications 1 à 27, destinés à être utilisés comme substances thérapeutiques actives ou comme auxiliaires de diagnostic.
25
30
35
40
45
50
55
20
EP 0 888 345 B1
21
EP 0 888 345 B1
22
EP 0 888 345 B1
23
EP 0 888 345 B1
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description
•
•
US 4808588 A [0004]
US 5106843 A [0005]
•
US 4938949 A [0024]
•
S. Meegalla et al. J. Am. Chem. Soc., 1995, vol. 117,
11037-11038 [0028]
S. Meegalla et al. Bioconjugate Chem., 1996, vol.
7, 421-429 [0028]
Cell Tissue Kinet, 1984, vol. 17, 65 [0031]
Mach et al. Life Sciences, 1995, vol. 57, PL57-62
[0045]
Non-patent literature cited in the description
•
•
•
Cancer Research, 1995, vol. 55, 408 [0002]
Arthur Murry III ; D. Lloyd Williams. Organic Synthesis with Isotopes. Interscience Publishers Inc,
1958, vol. I II [0027]
Melvin Calvin et al. Isotopic Carbon. John Wiley and
Sons Inc, 1949 [0027]
•
•
•
24
Téléchargement