
2=−1
1=−
4k= 1 4k+1 =
4k+2 =−14k+3 =−k∈Z
(a1+b1)+(a2+b2)=(a1+a2) + (b1+b2)
(a1+b1).(a2+b2)=(a1.a2−b1.b2) + (a1.b2+b1.a2)
(a+b).(a−b) = a2+b2
(a+b)−1=a
a2+b2−b
a2+b2=1
a2+b2(a−b)
z2
1+z2
2= (z1+z2)(z1−z2)
z= (z) + (z)
z=z0⇐⇒ (z) = (z0) (z) = (z0)
(z+z0) = (z) + (z0) (λz) = λ(z)
(λz) = λ(z)λ∈R
(z+z0) = (z) + (z0)
(z) = −(z) ( z) = (z)
¯
¯z=z z +z0= ¯z+¯
z0
z.z0= ¯z. ¯
z0¯
zn=zn
λz =λ¯z, λ ∈Rz=−¯z
(z) = 1
2(z+ ¯z) (z) = 1
2(z−¯z)
z∈R⇐⇒ (z)=0 ⇐⇒ z= ¯z
z∈R⇐⇒ (z)=0 ⇐⇒ z=−¯z
~
~
×
M(z)
|z|
×
M0(¯z)
O
(z)
(z)
−(z)
arg(z)
z=a+b(a, b)∈R2,|z| ≥ 0z= 0 ⇐⇒ |z|= 0
|z|=√a2+b2≥0|z|=OM |z|2=z.¯z
(|(z)|≤|z|
|(z)| ≤ |z||¯z|=|z|1
z=¯z
|z|2
|z.z0|=|z|.|z0| |zn|=|z|n, n ∈Z|z+z0| ≤ |z|+|z0|
U={z∈C/|z|= 1}
∀z∈Uz−1= ¯z∈U
∀z∈C∗z∈U⇐⇒ z−1= ¯z
arg(zz0) = arg(z) + arg(z0)
arg(z−1) = arg(¯z) = −arg(z)
arg(zn) = narg(z)
x+y=x y z+z0=z0
(θ+θ0)=eθeθ0(θ)−1=eθ=e−θ
cos(θ) = eθ+e−θ
2sin(θ) = eθ−e−θ
2
nθ = ( iθ)ncos(nθ) + sin(nθ) = (cos(θ) + sin(θ))n
θ=θ0⇐⇒ θ=θ0[2π]
|z|=(z)z=¯z
az2+bz +c= 0 (E)
∆ = b2−4ac. δ ∈Cδ2= ∆
∆ = 0 (E){− b
2a}
∆6= 0 (E){−b+δ
2a,−b−δ
2a}
az2+bz +c=az−−b+δ
2az−−b−δ
2a
z1z2(E)
1) z1+z2=−b
a2) z1z2=c
a