Z[i]
z, w ∈Z[i]z±w, zw ∈Z[i]Z[i]
C C Z[i]
Q(i)t2+ 1 Q Q(i)
Q(i)Z[i]
KZ[i]
K={z/w :z, w ∈Z[i], w 6= 0}.
Z=z/w ∈K z =x+yi ∈Z[i] 0 6=w=u+vi ∈Z[i]Z=z¯w
w¯w=xu+yv
u2+v2+i−xv+yu
u2+v2∈Q[i]
Z∈Q[i]x+yi
ux, y, u ∈Zu6= 0 Z=z/u z =x+yi ∈Z[i]
u∈Z[i]
Z[i]
z=x+yi ∈CN(z) = z¯z=|z|2=x2+y2
z, w ∈CN(zw) = N(z)N(w)
N(zw) = zwzw =z¯zw ¯w=N(z)N(w)
z, w ∈Z[i]z|wZ[i]N(z)| N (w)Z
z|w w =zz0z0∈Z[i]N(w) = N(z)N(z0)N(w),N(z),N(z0)∈Z
N(z)| N (w) =⇒z|w
N(2 + i) = N(2 −i)=5 N(2 + i)| N(2 −i) 2 + i-2−i2−i
2+i=3
5−i4
5/∈Z[i]
z∈Z[i]Z[i]N(z)=1
z∈Z[i]×z|1z|1N(z)| N(1) = 1 N(z)≥0
N(z)=1
N(z)=1 z¯z= 1 z|1
Z[i]×
z=x+yi ∈Z[i]×x2+y2= 1 x, y ∈Z
x=±1, y = 0 x= 0, y =±1Z[i]×={±1,±i}
z∈Z[i]N(z)zZ[i]
z=w1w2w1, w2∈Z[i]w1w2
N(z) = N(w1)N(w2).
N(z)N(w1)=1 N(w2)=1
z= 3
N(3) = 9 3 Z[i] 3 = zw
z w ∈Z[i]N(z) = N(w)=3
z=x+yi x2+y2= 3 x2≤3|x| ≤ √3x= 0 ±1x= 0 y2= 3
x=±1y2= 2
Z[i]
z∈Cq∈Z[i]N(z−q)≤1/2
z=x+yi u v x y
u, v ∈Z,|u−x| ≤ 1/2,|v−y| ≤ 1/2.
q=u+vi ∈Z[i]N(z−q)=(x−u)2+ (y−v)2≤(1/2)2+ (1/2)2= 1/2
Z[i]
a, b ∈Z[i]b6= 0 z=a/b q ∈Z[i]
N(a/b −q)≤1/2r=a−bq N(r) = N(a/b −q)N(b)≤(1/2)N(b)<N(b)N(b)>0
Z[i]N
Z[i]
Z[i]