K∀x6=
y∈K, ∀α∈]0,1[,(1 −α)x+αy ∈int(K).
(E, k.kE)
B E
⇐⇒ ⇐⇒ ⇐⇒
B
∀x6=y∈B, ∀α∈]0,1[,k(1 −α)x+αyk<1
∀x6=y∈E, ∀α∈]0,1[,k(1 −α)x+αyk<max(kxk,kyk)
E B
u∈Rdkuk1=P1≤i≤d|ui| kuk∞= max1≤i≤d|ui|
Bk.k∞
x∈B−1< xi<1x
δ= 1 − |xi|y±=x±δeiy+6=y−∈B1
2(y−+y+) = x x
ext(B)⊆ {−1,1}dxi= (1−α)yi+αzi
α∈(0,1) yi≤xi≤zizi≤xi≤yi|xi|,|zi| ≤ 1|xi|= 1
yi=zi=xixext(B) = {(±1,...,±1)}
Bk.k1
x∈∂B xi6∈ {−1,0,+1}x
j xj∈ {±1}Pi|xi|= 1
j6=i xj6∈ {−1,0,1}δ= min(|xi|,1− |xi|,|xj|,1− |xj|)y±=x±δei∓δej
y−,i, y+,i xi|y±,i|=|xi| ± δ
|y±,j |=|xj| ∓ δky±k1=kxk1≤1x=1
2(y−+y+)
xext(B)⊆ {−1,0,1}d∩B=: Z Z =
{±ei}ei= (1 −α)y+αz α ∈(0,1)
1 = (1 −α)yi+αzi|zi|>1|yi|>1z6∈ B y 6∈ B
ext(B) = {±ei}
C0([0,1]) kfk∞= max[0,1] |f|L1([0,1])
kfk1=R1
0|f|K= conv(ext(K))
BC0([0,1])
f: [0,1] →Rx0∈[0,1]
|f(x0)|<1f B δ = 1 − |f(x0)|
ε > 0∀x∈[x0−ε, x0+ε],|f(x)|<1−δ/2
χ: [0,1] →R+x0χ(x0) = 1
χ([0,1] \[x0−ε, x0+ε] = 0
f±=f±δ
2χkf±k∞≤1f=1
2(f−+f+)
fext(B)⊆ {−1,1}[0,1] ∩B
±1
x7→ 1, x 7→ −1 ext(B) = {x7→
1, x 7→ −1}
BL1([0,1])