Mathématiques pour les vacances à l’attention des élèves entrant en
Terminale S
Afin de débuter l’année 2016-2017 de terminale S dans les meilleures conditions en
mathématiques, les élèves trouveront en pièce jointe un document leur permettant de revoir leurs
bases et de s’entrainer.Il est possible revoir les cours en consultant le manuel Sésamath de 1
ère
S :
http://mep-outils.sesamath.net/manuel_numerique/?ouvrage=ms1s_2015
Compétences à acquérir afin de réussir en mathématiques
Chercher - Raisonner - Modéliser – Calculer - Représenter - Communiquer
Révisions pour une entrée en classe de Terminale S
Revoir le programme 1
ère
S ainsi que toutes les notions vues au niveau DNB.
Ce qu’il faut savoir et savoir-faire :
1. CALCULS : Excellente maîtrise des calculs utilisant notamment les fractions - puissances (connaitre les
formules par cœur) - équations - équations produits - inéquations- identités remarquable -
factorisation.
2. LE SECOND DEGRE : Fonctions polynômes. Trinôme du second degré. Forme canonique. Factorisation
du polynôme du second degré. Résolution d'une équation et d’une inéquation du second degré. Etude du
signe d'un trinôme du second degré. Interprétation graphique. Tableaux de signes -tableau de variations.
3. GÉNÉRALITÉS SUR LES FONCTIONS : Domaine de définition. Comparaison de fonctions. Position de
deux courbes. Sens de variation. Sens de variation et représentation graphique de fonctions de référence et
fonctions associées : 1°) La fonction valeur absolue. 2°) La fonction racine carrée 3°) La fonction inverse …
Calculatrice & Algorithmique.
4. VECTEURS. COLINÉARITÉ : Vecteurs colinéaires. Condition de colinéarité par les coordonnées.
.Expression d'un vecteur en fonction de deux vecteurs de base. Équation cartésienne d'une droite. Position
relative de deux droites. Réviser la géométrie dans l'espace du programme de la seconde.
5. DERIVATION : Equation d'une droite. Taux d'accroissement. Approche du concept de nombre dérivé
d'une fonction en un point, définition. Tangente à une courbe en un point. Fonction dérivée. Dérivées des
fonctions usuelles. Fonctions affines. Trinôme du 2d degré. Fonction puissance n. Fonction inverse et fonction
racine carrée. Dérivées et opérations. Connaitre par cœur et savoir utiliser les formules de dérivation des
fonctions. Savoir-faire une étude de fonction avec tableau de variation complet –Equation de la tangente à
courbe représentative d’une fonction.
6. ANGLES ORIENTES ET TRIGONOMÉTRIE : Cercle trigonométrique (par cœur) . Mesure des angles
orientés : le radian. Angle orienté d'un couple de vecteurs. Mesure principale d'un angle. Cosinus et sinus
d'un angle orienté. Plan orienté; repère orthonormé direct. Propriétés des angles orientés. Formules avec :
Cosinus et sinus d'angles associés. Résolutions des équations : cos x= cos a et sin x =sin a.
7. SUITES : Mode de générations d'une suite. Suites de valeurs de fonction. Suites définies par
récurrences. Suites arithmétiques. Suites géométriques. Propriétés. Calcul des termes. Somme des n premiers
termes. Savoir démontrer qu'une suite est arithmétique ou géométrique.
Sens de variation d'une suite. Suites croissantes, suites décroissantes. Suites majorées, minorées, bornées.
Approche de la notion de limite d'une suite à partir d'exemples… calculatrice & Algorithmique - formule
8. STATISTIQUES : Paramètres de position ou de tendance centrale : Moyenne, médiane et quartiles.
Paramètres de dispersion : Étendue Variance et écart type d'une série statistique.