nK
2X1, . . . , Xn
f(X1, . . . , Xn) = P1≤i≤j≤nαi,j XiXj
i < j
αi,j XiXj=αi,j
2(XiXj+XjXi).
f(X1, . . . , Xn) =
Pn
i,j=1 ai,j XiXji6=j ai,j =aj,i f
Mf= (ai,j )
f(X1, . . . , Xn) = (X1, . . . , Xn)Mf
X1
Xn
.
Mff(X1, X2, X3) = X2
1+
2X2
2+ 4X2
3+X1X2+ 2X1X3+X2X3+ 3X3X2
f
˜
f:Kn→Kx= (x1, . . . , xn)7→ f(x1, . . . , xn)
∀λ∈K˜
f(λx) = λ2˜
f(x)
b˜
f:Kn×Kn→Kb˜
f(x, y) = 1
2(˜
f(x+y)−˜
f(x)−˜
f(y))
f2
b˜
f(x, y) = 1
2(x1, . . . , xn)Mf
y1
yn
+ (y1, . . . , yn)Mf
x1
xn
=Pn
i,j=1 ai,j xiyj= (x1, . . . , xn)Mf
y1
yn
.
b˜
fx y
f b ˜
f
b˜
f(x, y) = x1y1+ 2x2y2+ 4x3y3+1
2(x1y2+x2y1)+(x1y3+x3y1) + 2(x2y3+x3y2).
FqXq−X
0