PHY2001 Thermodynamique des systèmes terrestres AUT 2014
Figure 2 . Reseaux d’isothermes : a) isothermes du CO
2
, obtenues expérimentalement. b) Isothermes d’un
gaz parfait.
Source : http://www.chm.ulaval.ca/gecha/chm1905/1_equations_etat/
La température critique
Pour comprendre le comportement du gaz à une température donnée, commençons pour
suivre un processus isotherme subit par une mole de dioxyde de carbone. Soit l’isotherme
T = 13°C de la figure 2a). Au point A la mole de CO2 contenue dans un cylindre à piston, est à
l’état gazeux, occupe un volume de 0,6 L et sa pression est de 30 atm. On diminue le volume en
maintenant la température constante. La pression augmente au fur et à mesure que le volume
diminue jusqu’au point B et puis C. À partir de C la diminution de volume n’entraine pas une
augmentation de pression. Si on pouvait regarder à l’intérieur du cylindre on noterait que la
phase liquide est apparue dans le système et coexiste avec la phase gazeuse. La première goutte
s’est formée en C. La proportion de liquide augmente avec la diminution de volume jusqu’à la
disparition complète de la phase gazeuse en E. En E, le piston s’appuie sur la surface du liquide.
La réduction de volume de E à F requiert une grande augmentation de la pression. Le liquide est
pratiquement incompressible. De A à C les forces d’interaction entre les particules sont petites
et le gaz se comporte comme un gaz quasi-parfait. Entre C et E les forces d’attraction sont
dominantes. De E à F les forces de répulsion rendent difficile la diminution du volume.
Si on pouvait voir à l’intérieur du récipient, à l’état D on verrait une phase liquide séparé de la
phase gazeuse par une interface bien définie. À des températures plus élevées, par exemple à
30°C le début de la condensation commence à des pressions plus élevées. À une température
très spéciale, 30,4°C pour le CO2, la phase gazeuse se transforme en liquide de façon continue.
On n’observe jamais une surface entre les deux phases. À cette température, nommée
température critique, et à des températures supérieures, le système est formé par une seule
phase à n’importe quelle pression. Nous devons conclure qu’il est impossible de condenser un
gaz à des températures supérieures à la température critique du gaz.
Le tableau 1 nous donne la température critique de quelques gaz. Le tableau montre que, par
exemple, l’azote ne peut pas être liquéfié par compression, à moins que sa température soit
inférieure à -147°C = 126 K.
Tableau 1 : la température critique de quelques gaz
3Les gaz réels