a∈Rfafa(x) = eax (fa)a∈R
n∈N?a1< a2< . . . < an
λ1, λ2, . . . , λnλ1fa1+λ2fa2+. . . +λnfan= 0
∀x∈R, λn=−
n−1
X
k=1
λke(ak−an)x.
ak−an<0k < n x +∞λn= 0
E u, v ∈ L(E)
Im(u+v)⊂Im(u) + Im(v)
Ker(u) + Ker(v) = EIm(u+v) = Im(u) + Im(v)
x∈E u(x)∈Im(u)v(x)∈Im(v)u(x) + v(x)∈Im(u) + Im(v)
u v =−uIm(u) + Im(v) = Im(u)6={0}
u+v= 0 Im(u+v) = {0}
zIm(u) + Im(v)x y ∈E z =u(x) + v(y)
x=xu+xvy=yu+yvxu, yu∈Ker(u)xv, yv∈Ker(v)u(x) = u(xv)
v(y) = v(yu)z=u(w) + v(w)w=xv+yu
E F V E
LV(E, F ) = {u∈ L(E, F )V⊂Ker(u)}
L(E, F )
LV(E, F )
L(E, F )3u7→ u|V∈ L(V, F )V
W V E
φ:LV(E, F )3u7→ u|W∈ L(W, F )W
φ(u)=0 u W u ∈ LV(E, F )u V u V +W=E
v∈ L(W, F )u v W V
V+W=ELV(E, F )φ(u) = vLV(E, F )L(W, F )
dim(LV(E, F )) = dim(L(W, F ))
= dim(W) dim(F)
= (dim(E)−dim(V)) dim(F).
BV+W W
V E u LV(E, F )B
V
z }| {
0··· 0
W
z }| {
?··· ?
0··· 0?··· ?
.
?dim(W) dim(F)LV(E, F ) (dim(E)−
dim(V)) dim(F)
E F f ∈ L(E, F )f g ∈ L(F, E)
f◦g= IdF