PREMIERES CONFIGURATIONS
Dans chacun des cas, indiquer si l’on peut conclure que la figure est un quadrilatère particulier ou un triangle
particulier sinon faire une figure justifiant votre réponse.
Données
Nom du quadrilatère ou du
triangle
Ce n’est pas un quadrilatère ou
triangle particulier. Faire une figure
Un angles mesure 90°
et deux côtés sont parallèles.
Dans un triangle deux côtés sont de
même longueur.
Dans un quadrilatère les diagonales sont
de même longueur.
Dans un triangle deux angles sont
complémentaires.
Deux côtés sont parallèles.
Dans un triangle, un angle mesure 60°.
Les diagonales se coupent en leur milieu
et sont perpendiculaires.
Dans un quadrilatère deux angles sont
supplémentaires.
Le triangle est inscrit dans un cercle.
Les diagonales sont perpendiculaires.
1 Soit ABC un triangle rectangle en A et I le milieu de [BC].
Le cercle de diamètre [AI] recoupe (AB) en E et (AC) en F.
1° Quelle est la nature du quadrilatère AEIF ?
2° Démontrer que les droites (EF) et (BC) sont parallèles
2
Le cercle C a pour diamètre [BC], A et D sont deux points de C .
Les parallèles à (AB) et (AC) menée de D recoupent le cercle en E et F.
Quelle est la nature du quadrilatère BECF
3 Deux cercles C et C’ de centre O et O’ sont sécants en A et B.
Les droites (OA) et (O’A) recoupent C en P et Q et C’ en P’ et Q’.
1° Démontrer que P,B et Q’ sont alignés.
2° Démontrer que les points P, Q, P’ et Q’ sont sur un même cercle.
3° Démontrer que les droites (AB), (PQ) et (P’Q’) sont concourantes.
A
B
C
I
E
F
B
C
A
D
E
F
O
O'
A
B
P
P'
Q
Q'
1 1° E est sur le cercle de diamètre [AI] donc (AE)(EI). De même (AF)(IF).
ABC est un triangle rectangle en A donc (AB)(AC). AEIF a trois angles droits c’est donc un rectangle
2° Les droites (AC) et (EI) sont donc parallèles.
Dans le triangle ABC la droite (EI) passe par le milieu du côté [BC], est parallèle à (AC) elle coupe donc le
troisième côté [AB] en son milieu E.
De même F est le milieu de [AC].
Dans le triangle ABC la droite (EF) passe par les milieux de deux côté elle est donc parallèle au troisième côté
(BC).
2 On a (DF)//(AB), (DE)//(AB) et (AB)(AC) donc (DE)(DF) donc D est sur le cercle de diamètre [EF].
Le cercle circonscrit au triangle DEF est donc le cercle de diamètre [EF]. Par hypothèses C passe par les points
D, E et F. Donc [BC] et [EF] sont deux diamètres du même cercle C et on peut en déduire que BECF est un
rectangle.
3 1° Il faut démontrer que (PB)(AB) et que (BQ’)(AB).
2° (PQ)(AQ) et (PP’)(P’Q’) donc P, P' Q et Q' sont sur le cercle de diamètre [PQ']
3° Soit M le point d'intersection des droites (PQ) et (P'Q') Où est l'orthocentre du triangle MPQ' ?
Que représente la droite (AB) pour le triangle MPQ' ?
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !