I. Introduction aux Phénomènes Quantiques.
1. Nécessité de la Mécanique Quantique.
Fin du 19ème siècle, 3 phénomènes expérimentaux ne peuvent être interprétés par la physique
classique (mécanique classique de Newton et lois de l' électromagnétisme de Maxwell):
* Le rayonnement du corps noir.
* L'effet photoélectrique.
* La spectroscopie atomique.
Chacune sera interprétée au début du 20ème siècle pour aboutir à 3 types de quantification
fondamentaux:
Le rayonnement du corps noir: -----> quantification de l'énergie
corps noir: corps qui émet des radiations par quantités discontinues de fréquence, en infraction avec
les théories classiques. En 1900, Planck émet l'hypothèse que les échanges d'énergie matière -
rayonnement se font par quantités discrètes appelées quanta d'énergie. Le quantum d'énergie est
proportionnel à la fréquence de la radiation:
E = h= ħ
h est la constante de Planck:
h = 6.625 10 -34 J.s et ħ = h/2
L'effet photoélectrique: -----> quantification de la lumière
C'est l'émission d'électrons observée lorsqu'on irradie sous vide un métal alcalin avec de la lumière
UV. La vitesse d'éjection (énergie cinétique) des e- ne dépend pas de l'intensité de la source, mais
uniquement de sa fréquence.
Hypothèse d'Einstein (1905): la lumière est constituée de corpuscules d'énergie h appelés
photons. L'un de ceux-ci est absorbé quand il rencontre un électron. Celui-ci est éjecté avec
l'énergie:
Ec = 1/2 mv2 = h- W
2
W est l'énergie de liaison de l'e- dans le métal.
Spectroscopie atomique: -----> quantification de l'atome
Chaque atome a un spectre d'émission ou d'absorption qui contient des raies spectrales étroites
donc bien définies. Dans le cas simple de l'atome d'hydrogène, les fréquences observées suivent la
loi de Balmer:
= R (1/n2 - 1/m2)
où R est la constante de Rydberg et m et n deux entiers strictement positifs tels que m>n.
Hypothèse de Bohr (1913): les niveaux d'énergie de l'atome sont quantifiés.
________________ Ej
h= Ej - Ei
__________________
pour l'atome d'hydrogène:
__________________ Ei
En = - h R/n2
________________
n entier > 0 et WI = -hR représente le premier potentiel d'ionisation de H (énergie de transition
n=1 ---> n=).
2. Dualité onde-corpuscule. Relations de de Broglie.
a) Idées fondamentales de la mécanique quantique :
* Lorsque l'on fait une mesure sur un système microscopique, on le perturbe de façon
fondamentale.
* abandon de la notion de trajectoire.
* on perd le déterminisme classique.
dualité onde-corpuscule: les aspects ondulatoires et corpusculaires de la lumière sont
inséparables. Les prévisions sur le comportement d'un photon ne peuvent donc être que de type
probabiliste.
3
b) Les relations de L. de Broglie.
Hypothèse de de Broglie (1924): les corpuscules matériels tout comme les photons peuvent avoir un
aspect ondulatoire ==> généralisation de la notion de dualité onde-corpuscule.
A un corpuscule d'énergie E et d'impulsion p on associe une onde de pulsation = 2et de vecteur
d'onde k tel que:
E = h = ħ
 = 2/|k| = h/|p|
p = ħk
3. Notion de fonction d'onde
Au concept de trajectoire classique se substitue un état quantique caractérisé par une fonction
d'onde (r,t) qui contient toutes les informations sur le corpuscule.
(r,t) est interprétée comme une amplitude de probabilité de présence: la probabilité dP(r,t) pour
que la particule soit trouvée dans un volume dv autour de r est donc:
dP(r,t) = |(r,t)|2 dv
|(r,t)|2 est donc la densité de probabilité de présence de la particule. Comme la probabilité de
trouver la particule dans tout l'espace est 1, on a:
R3 dP(r,t) = R3 |(r,t)|2 dv = 1
(r,t) est donc de carré sommable.
4. L'équation de Schrödinger
Elle a été postulée en 1926 et elle donne l'équation d'évolution de (r,t).
Si une particule de masse m subit l'action d'un potentiel V(r,t), sa fonction obéit à l' équation de
Schrödinger dépendante du temps:
4
iħ (r,t)/t = - ħ2/2m (r,t) + V(r,t)(r,t)
Si on définit H l'opérateur Hamiltonien:
H = - ħ2/2m + V(r,t)
alors elle s'écrit encore:
iħ (r,t)/t = H (r,t)
C'est une équation linéaire et homogène en  : il existe un principe de superposition. Elle est du
premier degré par rapport au temps : si  est connue à t0 alors elle est connue à t.
Cas ou le potentiel V(r) ne dépend pas du temps: cherchons alors s'il existe des solutions de la forme
(r,t) = (r) f(t). En reportant dans l'équation on trouve deux équations pour f(t) d'une part et (r)
d'autre part:
iħ df(t)/dt = E f(t) : f(t) = A e-it
et d'autre part une équation de Schrödinger indépendante du temps:
-ħ2/2m (r) + V(r) (r) = E (r)
soit
H (r) = E (r)
C'est l'équation aux valeurs propres de l'opérateur H. Les énergies possibles sont donc les valeurs
propres de H. On verra que les conditions aux limites ne permettent à E que de prendre certaines
valeurs (quantification).
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !