(3ème) Correction de cours sur les PGCD (Sujet B) 1º) En utilisant

(3ème) Correction de cours sur les PGCD (Sujet B)
1º) En utilisant les critères de divisibilité, explique pourquoi les
nombres suivants ne sont pas premiers entre eux : 165 et 714.
Solution : 165 est impair et 714 est pair, donc 2 divise un seul des deux.
1 + 6 + 5 = 12 et 7 + 1 + 4 = 12, donc 3 divise les deux nombres donc
leur PGCD est supérieur ou égal à 3, donc ce n'est pas 1, donc ils ne sont
pas premiers entre eux.
2º) Écris la liste des diviseurs de chacun des deux nombres, puis trouve
leur PGCD : a) 12 = 1 x 12 = 2 x 6 = 3 x 4
et 56 = 1 x 56 = 2 x 28 = 4 x 14 = 7 x 8
donc PGCD (12 ; 56) = 4 ;
b) 100 = 1 x 100 = 2 x 50 = 4 x 25 = 5 x 20 = 10 x 10
et 55 = 1 x 55 = 5 x 11.
donc PGCD (100 ; 55) = 5.
3º) Calcule le PGCD par la méthode des divisions : a) 189 et 97 ;
189 = 97 x 1 + 92 ; 97 = 92 x 1 + 5 ; 92 = 5 x 18 + 2 ;
5 = 2 x 2 + 1 ; 2 = 1 x 2 + 0 ;donc PGCD (189 ; 97) = 1
b) 288 et 540.
540 = 288 x 1 + 252 ; 288 = 252 x 1 + 36 ; 252 = 36 x 7 + 0 ;
donc PGCD (540; 288) = 36
4º) a) Calcule PGCD (644; 119)
644 = 119 x 5 + 49 ; 119 = 49 x 2 + 21 ; 49 = 21 x 2 + 7 ;
21 = 7 x 3 + 0 donc PGCD (644; 119) = 7
b) Rend la fraction
644
119
irréductible.
644
119=7×92
7×17=92
17
. Comme on a simplifé par le PGCD (644 ; 119), la fraction
obtenue est irréductible.
1 / 1 100%

(3ème) Correction de cours sur les PGCD (Sujet B) 1º) En utilisant

La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !