TD Physique
première approche de la méthode d'euler…
Le premier modèle simple de chute libre donné en cours donnait une équation horaire
(expression en fonction du temps)de la forme:
Comme nous l'avons vu en TP puis en cours, ce modèle ne "colle" pas toujours à la
réalité. Il faut prendre en compte les forces de frottement…
Supposons qu'en plus du poids, notre balle de tennis soit soumise à une force de
frottement verticale, s'opposant au mouvement et de la forme f=-k
Montrer, en appliquant la deuxième loi de Newton, et en projetant cette relation
vectorielle dans le repère ci-contre, que l'équation du mouvement peut se mettre sous
la forme:
Nous allons essayer de résoudre cette équation différentielle par une méthode
numérique, et non par une méthode analytique. Pour cela nous allons devoir faire des
approximations.
Sachant que la masse de la balle est 0,2 kg et que k=0,2 kg.s-1, réécrire l'équation
différentielle précédente avec des coefficients numériques.
La méthode d'Euler consiste à résoudre cette équation différentielle en calculant pas à pas les valeurs de la
vitesse:
Etape 1 t=0s (remplissage de la première ligne du tableau)
D'après les conditions initiales, v=0. Si on introduit ce résultat dans l'équation différentielle on trouve .
Ces deux résultats permettent de remplir les deux premières cases du tableau de valeur.
La méthode d'Euler consiste à approximer, à chaque pas, la fonction v(t) par une droite de pente .
On a donc, d'après cette approximation v(t)=10t (droite de pente 10 passant par le point de coordonnées (0s;0ms-1))
Etape 2 t=0,5s (remplissage de la deuxième ligne du tableau)
On calcule la valeur de v(t) pour t=0,5s grâce à l'approximation de l'étape 1: v(0,5)=10x0,5=5m.s-1
On introduit ce résultat dans l'équation différentielle et on trouve:
D'après l'approximation de la méthode d'Euler, on a v(t)= v(t)=5(t-0,5)+5 (droite de pente 5 passant par le point
de coordonnées (0,5s;5m.s-1))
Etape 3 t=1s (remplissage de la troisième ligne du tableau)
On calcule la valeur de v(t) pour t=1s grâce à l'approximation de l'étape 2: v(1)=5(1-0,5)+5=7,5m.s-1
On introduit ce résultat dans l'équation différentielle et on trouve:
D'après l'approximation de la méthode d'Euler, on a v(t)= v(t)=2,5(t-0,5)+7,5 (droite de pente 2,5 passant par le
point de coordonnées (1s;7,5m.s-1))
Et ainsi de suite…. A vous de remplir le tableau ci-contre en
suivant le modèle donné, puis de tracer la courbe
représentant v en fonction de t pour t variant entre 0
et7,5s. Puis répondez aux questions suivantes:
1°) Quelle semble être la valeur vers laquelle tend la vitesse?
2°) On nomme cette valeur la vitesse limite. Essayons de
retrouver cette valeur à partir de l'équation différentielle
de départ, pour cela suivez les étapes suivantes:
a) Lorsque la vitesse limite est atteinte, quelle est la valeur
de dv/dt ?
b) Introduire cette valeur de dv/dt dans l'équation
différentielle précédente.
c) Calculer la valeur de v correspondante, c'est la vitesse
limite.
²gt
2
1
)t(x
v
m
k
g
dt
dv
2
s.m5510
dt
dv
dt
dv
t(s)
v(m.s-1)
approximation de v
0
0
10
v(t)=10t
0,5
5
5
v(t)=5(t-0,5)+5
1
7,5
2,5
v(t)=2,5(t-1)+7,5
1,5
2
2,5
3
3,5
4
4,5
5
5,5
6
6,5
7
7,5
2
s.m10010
dt
dv
2
s.m5,25,710
dt
dv


à t=0, v=0 et x=0
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
.
…………………………………………………………………………………………………………………………………………………………………………
…………………………………………………………………………………………………………………………………………………………………………
………………………………………………………….
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !