section 6

publicité
1
SECTION 6.1 : STATIQUE ET DYNAMIQUE PLUS AVANCÉE
Introduction
Ton étude de la mécanique et plus particulièrement la dynamique (l’étude du
« pourquoi » du mouvement) s’approfondira davantage au courant de cette
section où on reverra les trois lois de Newton et leur application à des
problèmes plus difficiles que ceux de l’an passé. Ensuite, on introduira aux
unités 6.2 à 6.5 de nouveaux concepts de la dynamique.
Révision
Rappelons-nous premièrement que la seule façon de mettre des objets en
mouvement est par l’application de forces, soit des poussées ou des
tractions. Celles-ci sont variées. Elles peuvent être des forces où un contact
direct ou indirect existe entre l’objet subissant le mouvement et l’agent de la
force appliquée. En voici quelques unes:
A. la force appliquée (Fa) venant soit d’un agent, motorisé ou pas;
B. la force normale (FN) venant de la résistance en partie ou en entier
du poids d’un objet par une surface quelconque;
C. la tension (T) venant de la force exercée par une ficelle, une corde
ou une chaîne supportant un poids ou résistant à une force qui lui
est appliquée;
D. la force de frottement (Ffr) venant de la résistance offerte par une
surface au mouvement d’un objet.
Les forces peuvent aussi agir à distance, sans contact. Ces forces sont:
A. la force gravitationnelle (Fg) venant de l’attraction d’une masse
par une autre;
B. la force électrique (Fe) venant de l’attraction ou de la répulsion
entre un objet chargé et un autre (chargé ou pas);
C. la force magnétique (FB) venant de l’attraction ou de la répulsion
entre deux objets magnétisés ou de l’attraction d’un objet
ferromagnétique par un objet magnétisé.
On étudiera la force électrique à l’unité VII et la force magnétique à l’unité
X. Quant à la force gravitationnelle, elle entrera immédiatement en jeu dans
les exercices que l’on fera dans cette unité. Puisque la majorité de ces
exercices seront pour des masses placées à la surface de la Terre, la force
gravitationnelle aura souvent besoin d’être calculée pour une masse placée
dans le champ gravitationnelle de cette dernière. Mathématiquement, la
force gravitationnelle, Fg ou W (de l’anglais « weight ») = mg où g = 9,81
N/kg. Chaque kilogramme de masse placé à la surface de la Terre est attiré
par cette dernière avec une force de 9,81 N.
2
Afin d’expliquer le résultat de l’application de force.s sur un objet, Sir Isaac
Newton, à la suite de ses expérimentations nous a livré trois lois. Les voici :
A. La première loi : Un objet au repos a tendance de rester au repos et
un objet en mouvement reste en mouvement rectiligne uniforme
tant qu’il y a absence d’une force nette agissant sur l’objet. Si FR =
0, alors a = 0 et v = constante et nous avons un état d’équilibre
(appelé préférablement équilibre de translation où translation
signifie « mouvement linéaire »).
B. La deuxième loi : Si un objet subit une force nette alors l’objet
accélère dans la direction de la force nette et avec une grandeur
égale à a = FR/m et un état de déséquilibre existe.
C. La troisième loi : Pour chaque force d’action, il y aura une force de
réaction égale et opposée à cette première. FAB = -FBA.
Exercices :
A. Situations d’équilibre (première loi de Newton)
Dans chacun des cas suivants, une force ou plus agit (agissent) sur la pierre.
Trace un diagramme vectoriel précis démontrant toutes les forces agissant
sur la pierre à l’aide de vecteurs dont les longueurs relatives respectent la
situation d’équilibre. Utilise une règle et un crayon.
3
7. La petite Amélie aspire
être une gymnaste et se
pend d’une variété de
positions comme
illustrée ci-contre.
Puisqu’elle n’accélère
pas, la force nette sur
elle est nulle. Elle pèse
300 N. Inscris les valeurs
enregistrées par chacun
des dynamomètres.
Quand Henri, le peintre, se
tient exactement au milieu de
l’échafaud, le dynamomètre à
gauche enregistre 500 N.
Inscris la valeur enregistrées
par le dynamomètre à droite.
Le poids total d’Henri et de
l’échafaud
doit
être
__________ N.
Henri se tient maintenant plus
à gauche. Complète.
Henri glisse et arrive tout
juste à s’agripper à l’extrême
gauche
de
l’échafaud.
Complète.
4
8. Un bloc ayant une masse de 12,5 kg pend de poulies très légères
comme démontré ci-dessous. Quelle force doit être appliquée à la
ficelle pour que la masse demeure au repos?
9. Une caisse est tirée à une vitesse vectorielle constante par une
force dirigée à 30,0° de l’horizontale comme démontré ci-dessous.
La force de frottement sur la caisse est 1163 N Que sera la
grandeur de la force qui tire la caisse?
10.Pour la situation au # 2, que sera la tension dans la ficelle
horizontale si la pierre a une masse de 0,759 kg et que la corde
oblique fait un angle de 60,0° avec le plafond?
11.Pour la situation au # 6, quelle est la masse de la pierre si le
frottement vaut 7,46 N et que l’inclinaison du plan est 30,0°?
12.Pour la situation au # 5, la pierre a une masse de 0,473 kg. La
ficelle à gauche fait un angle de 62,0° tandis que la ficelle à droite
fait un angle de 34,0° avec le plafond. Évalue la tension dans la
ficelle à droite.
13. Une masse M est reliée à une masse m par une ficelle. La masse
M repose sur un plan incliné et la ficelle passe par une poulie au
sommet du plan de sorte que la masse m pend comme démontré cidessous. Trouve une formule qui donnera l’angle du plan dans la
situation où un équilibre existe.
5
14.Le schéma ci-dessous montre une poutre soutenue par un chevalet.
Calcule la tension supportée par les pattes du chevalet si la poutre
exerce une poussée verticale de 100 N sur le point de contact. Les
pattes font un angle de 45,0° avec l’horizontale.
15. Le schéma ci-dessus montre une poutre de masse négligeable
soutenant une charge de 100 kg par l’entremise d’un câble faisant
un angle de 30,0° avec l’horizontale. Quelle est la grandeur de la
tension dans le câble qui soutient la charge?
B. Situations de déséquilibre (deuxième loi de Newton)
1. Un bloc pesant 6,00 N se trouve sur une surface polie et
horizontale. On le pousse avec un bâton (qui fait un angle de 30,0°
avec l’horizontale) avec une force de 8,00 N. Que sera
l’accélération du bloc sur la surface?
2. Un corps dont la masse est de 9,00 kg subit une force appliquée de
+48,0 N pour 3,00 s lorsque le frottement est -12,0 N. Combien
loin avancera-t-il pendant ce temps s’il avait une vitesse de
+1,60 m/s avant l’application de la force?
3. Une automobile ayant une masse de 1,00 x 10 3 kg a une vitesse de
30,0 m/s. Détermine la force nécessaire pour arrêter l’automobile
en 1,00 x 102 m.
6
Dans chacun des cas suivants, une force ou plus agit (agissent) sur la
roche. Trace un diagramme vectoriel précis démontrant toutes les forces
agissant sur la pierre à l’aide de vecteurs dont les longueurs relatives
respectent la situation de déséquilibre. Utilise une règle et un crayon.
10. Pour la situation au # 4, que sera l’accélération de la pierre
si le plan incliné fait un angle de 30,0° avec l’horizontale?
11. Pour la situation au # 8, quel est le frottement si cette pierre
ayant une masse de 0,384 kg décélère au taux de 0,85 m/s2?
7
12. Un objet ayant un poids de 100 N doit être descendu du toit
d’un édifice en utilisant une corde dont la tension maximale
possible avant qu’elle casse est 87 N. Comment doit-on
descendre l’objet (avec quelle accélération?) pour ne pas
casser la corde?
13. Les corps A, B et C de la figure ci-contre ont
respectivement des masses de 10,0 kg, 15,0 kg et 20,0 kg.
Une force de 50,0 N est appliquée à C. Trouve : (a)
l’accélération du système et (b) les tensions sur chaque
câble.
14.Deux masses de m = 4,00 kg et M = 6,00 kg sont liées par
une ficelle passant par une poulie.
a) Quelle est l’accélération de chaque masse?
b) Quelle est la tension dans la ficelle?
15.Un chariot de 20,00 kg est placé sur une table. Une ficelle
est attachée à une extrémité du chariot et une masse de 5,00
kg à l’autre extrémité. La ficelle est passée par une poulie
comme dans la figure ci-contre. Calcule l’accélération de
l’ensemble.
16.Les forces suivantes agissent sur un objet dont la masse est
500 kg : F1 = 250 N [N 45,0° E], F2 = 300 N [N 60,0° O] et
F3 = 500 N [S 70,0° O]. Détermine l’accélération de l’objet.
17.Un cycliste et sa bicyclette ont une masse combinée de 90,0
kg et roulent à 8,8 m/s [N]. Ensuite dans un intervalle de
temps de 3,00s, sa vitesse vectorielle devient 7,8 m/s [E].
Calcule la force qui a été nécessaire pour effectuer le virage.
C. Situations d’action-réaction (troisième loi de Newton)
1. Si la force qui frappe une balle de baseball est appelée la force
d’action, identifie la force de réaction.
2. Si les forces qui agissent sur une cartouche et le fusil duquel elle fut
tirée ont la même grandeur, pourquoi la cartouche et le fusil (en recul)
ont-ils des accélérations tellement différentes?
8
3. Ton camarade soutient que, si « à toute action correspond une réaction
contraire », ces deux forces devraient s’annuler et tous les systèmes
devraient être perpétuellement en équilibre. Elle illustre son propos à
l’aide du schéma ci-dessous. Ton camarade a-t-il raison? Explique.
D. Mélange de problèmes
1. Calcule l’accélération de chacun des blocs illustrés ci-après. (Néglige
le frottement s’il n’en est pas fait mention.)
2. Un bloc de 520 N est suspendu à une corde. On tire horizontalement
sur le bloc avec une force de 300 N. Quelle est la tension dans la
corde et l’angle qu’elle fait avec le plafond?
3. Pourquoi peux-tu exercer une plus grande force sur les pédales d’une
bicyclette si tu tires vers le haut sur les guidons?
4. Un bloc de 10,00 kg glisse le long d’un plan incliné à 40,0° de
l’horizontale. Quelle est la grandeur de la force de frottement entre le
bloc et le plan lorsque l’accélération du bloc est de 1,00 m/s 2?
5. Tu suspends au plafond la plante d’intérieur illustrée ci-contre.
(a) Quelle est la grandeur de la force exercée sur le plafond en
supposant que la masse totale suspendue est 3,00 kg?
(b) Si les ficelles tenant le panier font un angle de 15,0° avec la
verticale que sera la tension dans chaque ficelle?
9
6. (a) Si tu pousses horizontalement avec une force de 50,0 N sur une
boîte et que tu la fais glisser à une vitesse constante, quelle est la force
de frottement agissant sur la boîte? Si tu augmentes la force que tu
exerces sur la boîte, qu’arrivera-t-il au mouvement de la boîte?
Explique.
(b) Quel effet a la vitesse d’un objet glissant sur le frottement qui agit
sur lui?
(c) Quel effet à l’aire de contact sur la force de frottement?
(d) Quel effet à la vitesse et la superficie sur la force de frottement
qu’un objet ressent lorsqu’il se déplace à travers d’un fluide?
7. Une masse de 2,0 kg est reliée à une masse de 10,0 kg par l’entremise
d’une ficelle glissant sans frottement sur une poulie comme illustrée
dans le schéma ci-contre.
(a) Quelle est l’accélération du système si le frottement entre les roues
du chariot et la table est négligeable?
(b) Quelle est alors la tension dans la ficelle?
(c) quel temps mettra le chariot, à partir du repos,
pour parcourir les 50,0 cm qui le séparent de la poulie?
8. Une bille roule sur la surface d’une sphère, ayant commencé au
sommet de la sphère, comme démontré dans diagramme ci-contre.
Fais un diagramme des forces agissant sur la bille quand elle est :
a) au sommet de la sphère;
b) au point où elle est prête à quitter la surface de la sphère.
9. Trace un diagramme des forces pour la sphère ci-dessus si elle avait
été placée au deuxième point.
10.Toi et ton camarade êtes à tirer à l’aide de câbles un véhicule
embourbé, comme l’indique le schéma ci-dessous. Vous exercez tous
les deux des forces de même grandeur et pouvez faire varier l’angle
entre les lignes d’action des deux forces. Au-delà de quel angle seraitil préférable que tu sois la seule personne à tirer?
10
11.Complète le diagramme des forces (à l’échelle) pour chacun des deux
diagrammes ci-dessous.
12.Pour un bloc reposant sur une table, explique ce que sont les forces
d’action-réaction (il y en a trois paires impliquant le bloc, la surface
de la table et la Terre).
13. Un bloc ayant un poids de 50,0 N repose sur une table rugueuse et se
trouve attaché par des ficelles à une masse ayant un poids de 12,0 N
comme illustré ci- contre. Trouve la force de frottement entre le bloc
et la table si le bloc sur la table est en équilibre.
14. Imagine que tu demandes à un ami d’enfoncer un clou dans un
morceau de bois se trouvant sur une pile de livres placée sur ta tête.
Pourquoi serait-ce sans danger de te faire mal (Attention : Forte
possibilité d’un mal de tête à la suite de cette experience)?
15.Tu es dans un ascenseur de 600 kg, debout sur un pèse-personne.
Suppose que ta masse est de 50 kg.
(a) Calcule la tension dans le câble qui soutient l’ascenseur
(i) si celui-ci est arrêté;
(ii) s’il monte à une vitesse constante de 0,50 ms-1;
(iii) s’il monte avec une accélération constante de 0,60 ms-2;
(iv) s’il monte en décélérant au taux de 0,60m ms-2;
(iii) s’il descend avec une accélération constante de 0,60 ms-2;
(iv) s’il décélérant en décélérant au taux de 0,60m ms-2;
(b) Quel sera ton poids apparent (analogue à la force normale agissant
sur ton corps) dans les trois cas cités ci-dessus?
(c) Qu’indiquera (en kg) ton pèse-personne dans chacun de ces cas?
11
16. Jeanne se suspend à une poutre horizontale, tel que l’indique le
schéma ci-contre. L’écart entre ses mains affecte-t-il la grandeur de la
force qu’elle doit exercer pour se maintenir? Trace un diagramme des
forces en jeu et soumet une solution numérique assumant une masse
de 50,0 kg.
17. Explique ce qui arrive à l’accélération et la vitesse de la bille à
mesure qu’elle descend la rampe.
18.Un bloc ayant une masse de 2,00 kg repose sur un autre bloc ayant
une masse de 10,00 kg qui lui-même repose sur une surface sans
frottement. La plus grande force de frottement qui peut se développer
entre les deux blocs est 16,0 N. Calcule la plus grande force avec
laquelle le bloc inférieur peut être tiré afin que les deux blocs
avancent ensemble sans que le bloc supérieur glisse sur le bloc
inférieur.
19.Explique, en utilisant la deuxième loi de Newton, pourquoi un objet
lourd accélère au même taux qu’un objet léger lorsqu’ils sont en chute
libre.
20. Si un gros camion entre en collision avec une petite auto, sur quel
véhicule la force d’impact sera-t-elle la plus grande? Quel véhicule
subira le plus grand changement dans son mouvement? Explique tes
réponses.
21. Quel est le frottement entre la surface de contact d’un bloc de 10,0 kg
et le plan horizontal sur lequel on le fait glisser à vitesse constante en
lui appliquant une force constante et horizontale de 30,0 N?
22. Si tu échappes une feuille de papier et une pièce de monnaie de la
même hauteur (disons de 1 à 2 m) au même moment, lequel frappera
le sol en premier? Pourquoi? Si tu formes maintenant le morceau de
papier en une boule bien serrée et que tu refais la même expérience
avec la pièce de monnaie, quelle différence remarqueras-tu? Qu’est-ce
qui changera si tu refais la même expérience mais d’une hauteur
beaucoup plus élevée?
12
23. Dans le diagramme ci-dessous, que doivent être les valeurs de F et Θ
pour que la somme vectorielle des trois forces soit nulle?
24.Pourquoi un parachutiste tombe-t-il plus vite qu’un autre s’il est plus
lourd étant donné la même surface de parachute?
25.Deux hommes et un garçon halent un bateau le long d’un canal. Les
grandeurs et les directions des forces F1 et F2 qu’exercent les deux
hommes sont indiquées à la figure ci-dessous. Trouve la grandeur et
l’orientation de la force minimum que le garçon devrait exercer pour
que le bateau progresse au milieu du canal.
26. Une masse pend d’une ficelle qui est attachée au plafond. Une
deuxième ficelle (identique à la première) pend du niveau inférieur de
la masse. Voir le diagramme ci-contre. Quelle ficelle brisera si :
a) la 2e ficelle est tirée lentement avec une force de plus en plus
grande;
b) la 2e ficelle est tirée soudainement vers le bas?
Explique ton raisonnement.
27.Deux poids de 100 N sont attachés à un dynamomètre comme
démontré ci-contre. Quelle lecture enregistre-t-on sur le dynamomètre
- 0N, 100 N, ou 200 N?
28. À mesure qu’un objet tombe de plus en plus vite à travers de l’air où
la résistance de l’air est un facteur, est-ce que son accélération
augmentera, diminuera ou restera constante? Explique
13
29. Un chariot de 1,50 kg est attaché à une masse de 0,500 kg par une corde
horizontale passant par une poulie fixée au bord d’une table. La résistance due à
la friction qui se produit au niveau des roues et de la poulie est 1,2 N. Calcule
l’accélération du chariot.
30. Deux personnes placées aux extrémités d’une corde longue de 10,0 m tirent dans
des directions opposées avec des forces de 500 N. Assumant que la corde n’a pas
de masse, quel angle fera la corde avec l’horizontale si une masse de 20,0 kg pend
au milieu de la corde?
31. Une montgolfière d’une masse de 150 kg est attachée au sol avec une corde
d’une masse négligeable. Quand la corde est détachée, la montgolfière monte
avec une accélération de 2,0 ms-2. Quelle était la tension dans la corde?
32. Ginette tient le livre stationnaire contre le mur comme indiqué. Dans quelle
direction est le frottement sur le livre?
33. Une tige en métal ayant une masse de 5,00 kg est premièrement tirée et ensuite
poussée à une vitesse constante par une force faisant un angle de 45,0 ° avec
l’horizontale. Assumant, dans chaque cas, que la force de frottement est
horizontale comme dans la figure ci-dessous et égale à 0,4 fois la force normale
du plancher sur la tige (quand il n’y a pas de force agissant sur la tige), trouve la
force F dans chaque cas.
34. Considère une masse qui pend au bout d’une ficelle de longueur L et qui est
attachée au plafond d’un véhicule. Quel angle fera la ficelle avec la verticale si :
a) le véhicule avance avec une vitesse constante de 3,00 ms-1?
b) le véhicule accélère au taux de 4,00 ms-2?
14
35. Le graphique v-t ci-dessous est le graphique d’un étudiant pour le mouvement
vertical d’une personne qui saute d’un hélicoptère et quelques secondes plus tard
ouvre son parachute.
a) Explique le mouvement du parachutiste et les forces correspondantes qui
agissent sur lui.
b) De quelle façon pourrais-tu améliorer le graphique?
36. Un petit problème d’ingénierie : Imagine deux ponts qui sont une reproduction
exacte de chacun, excepté que toutes les dimensions de l’un sont cinq fois plus
grandes que celles de l’autre? Le premier pont est cinq fois plus long, ses poutres
sont cinq fois plus épaisses, etc. Quel pont a la meilleure habileté de soutenir son
propre poids? (Indice : En quoi dépend la force du poids? En quoi dépend le poids
du pont? Combine ces deux facteurs pour déterminer l’habileté du pont de
soutenir son propre poids.)
Résultats d’apprentissage :
Après avoir complété cette section, tu devrais pouvoir :
1. Exprimer les 1e, 2e, et 3e lois de Newton. (1)
2. Donner des exemples des 1e, 2e, et 3e lois de Newton. (2)
3. Distinguer une situation d’équilibre d’une situation de déséquilibre. (2)
4. Identifier les forces agissant sur un objet et dessiner le diagramme des
forces pour cet objet soit en situation d’équilibre ou de déséquilibre. (3)
5. Trouver la force nette (ou résultante) agissant sur un objet. (3)
6. Reconnaître des situations d’équilibre et de déséquilibre. (2)
7. Résoudre des problèmes d’équilibre et de déséquilibre. (3)
Références au manuel pour RAS ci-dessus :
Physique 12 : Chapitre 2, pp 68 à 96 et 114 à 119
15
Téléchargement