Leçon 28
Interférences de deux ondes cohérentes en optique. Exemples.
Applications (PC)
------------------------
Bibliographie : dans l’alinéa du programme : « non localisées » a disparu, donc il faut traiter les inter-
férences localisées. Ondes cohérentes exclut la source large & la source non monochromatique.
TecDoc Ondes : chapitre 9 (très confus, à éviter).
Hachette Optique Ondulatoire : chapitres 2, 3, 4 ! Moyen, sauf pour les manips & les discussions.
Bréal (Expériences d’Optique à l’agrégation de Physique)
Dunod Optique : chapitres 7 & 8. Bien.
Ellipses : La physique en Prépa : chapitres 17, 18 . Pour le plan.
I. LE PHENOMENE D'INTERFERENCES :
1. Vibration lumineuse : détecteurs optiques sensibles au champ électrique, solution des équations
de Maxwell, donc
 
 
rktjEE o
.exp.
. Type onde plane, éviter (à mon avis !) la notation réelle avec
des cosinus (comme TecDoc) & travailler avec des grandeurs complexes, sortir
tj
e
2
commun
(comme pour les vecteurs de Fresnel avec les valeurs efficaces), il reste la vibration lumineuse complexe
:
a A e j
.
, avec
o
rk
L
2.
, L chemin optique,
o longueur d’onde dans le vide,
2
o
E
A
. In-
tensité lumineuse (ou éclairement) : peut être définie une constante multiplicative près, problème
d'unités) par : I = a.a* = A². Attention ! Les derniers livres gardent la pendance en temps, & du coup
introduisent un facteur 1/2 dans l'intensité (moyenne temporelle). Je défendrais l'analogie avec les vec-
teurs de Fresnel.
2. Composition de deux vibrations de même fréquence :
* parallèles : suivant
k
:
212121
*
21 cos2., ,. ,. IIIIIIccIbaceBbeAa jj
avec
=
2 -
1 (déphasage).
* orthogonales : suivant
:
21
*
2121 ......... IIjeBieAjeBieAI jjjj
car la
base
( , )
 
i j
est orthonormée. Conclusion :
* si deux vibrations interfèrent, on n'a pas addition des intensités (mais addition des amplitudes) ;
* si deux vibrations n'interfèrent pas, il y a addition des intensités ;
3. Franges d'interférences : définies par
= L2 - L1 = cste (ddm).
* brillantes : définies par : vibrations en phase, donc
= 2m.
,
1cos
,
= m.
,
p
(ordre
d'interférence) entier. Alors I = Imax (interf. constructive).
* sombres : définies par : vibrations en opposition de phase, donc
= (2m+1).
,
1cos
,
 
2
12
m
,
p
(ordre d'interférence) demi - entier. Alors I = Imini (interf. destructive). On défi-
nit le contraste par :
 
I I
I I
max min
max min
& le facteur de visibilité par : V = |
|. S'en tenir à ces définitions, le
BO n'en a pas introduit de nouvelles même si TecDoc le fait.
4. Notion de cohérence : figure d'interférences visible si stable, donc
2
stable, soit :
* temporelle :
stable, source monochromatique. Longueur de cohérence temporelle :
cLT
, où est
la durée d’émission du train d’ondes (10-7 s pour un LASER, 10-11 s pour une lampe spectrale). Il faut
réaliser
T
L
.
* spatiale :
stable, source ponctuelle. Longueur de cohérence spatiale : largeur de la source correspon-
dant au premier brouillage.
* types de sources : cohérence totale : LASER. Lampe spectrale diaphragmée avec filtre : bonne cohé-
rence temporelle, mauvaise cohérence spatiale. Source blanche : totalement incohérente. Dans une ma-
nip, adapter les valeurs de la ddm à la cohérence de la source (notion de longueur de cohérence) : plu-
sieurs cm ou dm avec un LASER, quelques mm avec le doublet jaune du sodium, autour du micron avec
une source blanche.
II. INTERFERENCES NON LOCALISEES :
1. Principe de l'interféromètre. Exemples : la source ponctuelle est dédoublée en deux images
synchrones (pas de ddm) par l'interféromètre, par division du front d'ondes. Attention ! le miroir de
Lloyd est un système hybride ! Le programme exclut les dispositifs avec lentilles (Billet, Meslin) &
prismes (Fresnel). Il reste les miroirs de Fresnel & les fentes d’Young. Malgla diffraction, préférer ce
dernier système (figure & calculs plus simples). Préciser que ce type d'interféromètres a une très faible
cohérence spatiale, d'où l'intérêt du Michelson.
2. Etude : choisir un système (fentes d’Young) éclairé par une source ponctuelle & monochroma-
tique (cohérence totale). Calculer
  2ax
D
, puis
2
, puis I = 2Io.[1+cos
]. Tracer la courbe, en
déduire que le phénomène est une modification locale de la distribution locale d'énergie qui conserve la
valeur moyenne. Montrer que si la source est cohérente, alors
= 1. Manip : LASER & diapos avec plu-
sieurs valeurs de a. Caractériser les franges d'interférence (pas d'amortissement de l'intensité, interfrange
constante).
III. INTERFERENCES LOCALISEES :
1. Principe: le rayon incident R est dédoublé en deux rayons R1 & R2 par une lame semi - réflé-
chissante. La figure d'interférences est localisée sur la surface , ensemble des points M intersection des
couples de rayons R1 & R2. L'affirmer, la démonstration est hors programme. On travaille avec une
source étendue, & on va gagner en cohérence spatiale.
3. Franges d'égale inclinaison : d’une lame à faces parallèles, d’épaisseur e, d’indice n, étudiée par
réflexion (le contraste étant mauvais pour les franges par transmission). Calculer la différence de marche
(les livres, Faroux par exemple, le font dans le cas du Michelson, donc avec n = 1). On doit obtenir :
2
cos2
rne
car les deux rayons subissent des réflexions de nature différente. On a un axe de révo-
lution, les franges sont des anneaux concentriques. Au centre, l’ordre d’inrefrérence vaut :
2
12
ne
po
. Le supposer demi entier pour avoir un anneau noir. Pour le k-ème anneau noir, on a :
k
ne
rk
ne
r
ne
kpp k
k
ok
2
12
2
1
2
1
22
. On en déduit les rayons
kRRk1
.
4. Franges d'égale épaisseur : pour une lame d’épaisseur variable, étudiée en incidence normale.
Alors
e2
,
e
représente la variation d’épaisseur de la lame entre les points d’impact des deux
rayons. Les franges, localisées sur la lame, constituent des lignes de niveau (interfrange pour
2
e
).
IV. APPLICATIONS DES PHENOMENES D'INTERFERENCES :
Elles sont nombreuses : contrôles de planéité, couche anti - reflet, métrologie interférentielle (me-
sure de faibles épaisseurs, de petits angles, mesures de longueurs d'onde, mesure de la vitesse d'un fluide
(anémométrie LASER), holographie,..).
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !