Les équations de Maxwell

publicité
Les équations de Maxwell
I Postulats de l’électromagnétisme
A) Postulat de Lorentz

Dans un référentiel R galiléen, une charge q animée d’une vitesse v est soumise à

  
une force, appelée force de Lorentz : FL  q( E  v  B)


Ce postulat définit en même temps E et B (qui, on le verra plus tard, dépendent
du référentiel)
B) Postulat de Maxwell

Dans un référentiel R galiléen, une distribution de charges  ( r , t ) et de courant


 
j (r , t ) produisent un champ électrique E et un champ magnétique B qui satisfont les
équations suivantes :
1) A la divergence
  
E 
, équation de Maxwell–Gauss (MG)
0
 
  B  0 , équation de Maxwell–Flux ( M )
2) Au rotationnel

 
B
E  
, équation de Maxwell–Faraday (MF)
t

 

E 
 , équation de Maxwell–Ampère (MA)
  B  0  j   0
t 

C) Discussion

C’est un système d’équations différentielles, qui à partir d’une distribution de
 
charges et de courant permet de déterminer E , B dans tout l’espace à chaque
instant.
 Dans les conditions réelles (les distributions sont d’extension finie), on impose


en plus lim E  0 , lim B  0
r 
r 
 


Remarque : Si E est solution des équations de Maxwell, alors E  E0 où E0 est
un champ uniforme et stationnaire est aussi solution.
 On retrouve les équations de l’électrostatique et de la magnétostatique.
 Ce sont des équations macroscopiques, mais elles sont toujours valables
lorsqu’on se place à l’échelle microscopique.
 Ces équations sont valables aussi dans les milieux :   libre  lié ,
 

j  jlibre  jlié
 On a deux grands groupes d’équations de Maxwell :


- Les équations à la divergence, qui ne couplent pas E et B


- Les équations au rotationnel, qui couplent E et B .
Ainsi, dans le cas général, on ne peut pas découpler les deux champs. (C’est
pourquoi on parle d’un champ électromagnétique)
 Ces équations sont relativistes.
Relativité galiléenne : Toutes les lois de la mécanique sont invariantes par
changement de référentiel galiléen.
Relativité einsteinienne : Toutes les lois de la physique sont invariantes par
changement de référentiel galiléen.
On va voir que le postulat de l’électromagnétisme implique nécessairement que la
vitesse de la lumière est la même dans tout référentiel galiléen.
II Contenu physique des équations de Maxwell
A) Conservation de la charge
Equation de Maxwell–Ampère :

 

E 

  B  0  j   0
t 

Ainsi, en passant à la divergence :
 
  
 
  E 

0    (  B)  0    j   0
t 

 
  E 
  
 j  0
Mais  0
, donc l’équation devient

t
t
t
Ainsi, les équations de Maxwell sont compatibles avec le postulat de conservation
de la charge (qui est en fait un postulat indépendant : on a fait en sorte dans les
équations que ce postulat soit vérifié)
B) Equation de Maxwell–Gauss
  
  1
On a   E  , donc  E  dS   d
0
0
Le théorème de Gauss est donc toujours satisfait.
C) Equation de Maxwell–Flux
 
On a   B  0

Donc B est toujours à flux conservatif.
On remarque qu’on n’a pas d’analogue de  pour un champ magnétique : on n’a
jamais mis en évidence de « charge magnétique ».
D) Equation de Maxwell–Faraday

 
B
On a   E  
t
(Homogène !)

 En général, E n’est pas à circulation conservative, et ne dérive donc pas d’un
potentiel scalaire.

 On a ainsi deux sources de champ E :
- Les charges 

- La variation de B
On verra que c’est à l’origine de phénomènes d’induction électromagnétique et de
propagations des ondes électromagnétiques.

 Structure de E :
  


On peut écrire E  E1  E2 , où E1 serait le champ produit par des charges, et E 2

par B :
 
  

  E1  , et   E1  0 ; on retrouve bien un champ électrostatique
0

 
 
B
; on trouve un champ qui a une structure
  E2  0 , et   E2  
t
magnétostatique.


On donne à E1 le nom de champ longitudinal, et à E 2 celui de champ transversal.
Justification des noms : en transformée de Fourier, les équations deviennent :
  
 
ik  E1  0 , et ik  E2  0
 Absence de courants magnétiques :
On a

 
B
E 

t

 

E
  B  0 j  0 0
t


Il n’y a donc pas d’équivalent du terme  0 j dans E (si on réussit à mettre en
évidence des « charges magnétiques », il y aura sûrement un terme à ajouter…)
E) Equation de Maxwell–Ampère

 

E 

  B  0  j   0


t


 Théorème d’Ampère :
Il n’est plus vérifié ici :

 
E 
On aura dans le cas général  B  dl  0 I e  0 0 
 dS

t

 Sources de B :

- Le courant j

- La variation de E

Il est moins intéressant de séparer B en deux champs ici.
 « Courant de déplacement »
- Définition :

E
est homogène à une densité de courant (mais n’est pas une densité de
0
t


E
courant). On peut donc noter jD   0
t
On peut alors appliquer le théorème d’Ampère avec une intensité embrassée
« généralisée »
- Nécessité du terme de déplacement :
o Sous forme locale :
 

  B  0 j n’est pas compatible avec le postulat de conservation de la charge en
général :
  
 
 
On a en effet     B  0  0  j , et donc   j  0 ce qui est faux en général.
Il faut donc ajouter quelque chose en général.
L’équation de Maxwell–Gauss et le postulat de conservation de la charge
permettent de trouver l’équation de Maxwell–Ampère.
o Sous forme globale : exemple de contradiction si on ne tient pas compte du
terme supplémentaire :
I

 
  
B

d
l



  B dS  
(1) Si on suppose que   B  0 j :
On a
  
 
On aura pour la surface en noir    B  dS   0 j  dS  0 I
1
1
  
 
Et pour la surface en rouge    B  dS    0 j  dS  0
2
2
Ce qui est contradictoire puisque les deux surfaces s’appuient sur le même contour

 

E
(2) En prenant en compte le terme   B  0 j   0 0
t


  

E
On a    B  dS    0 ( j   0 )  dS   0 I
1
1
t


0


  

E
Et    B  dS   0 ( j   0
)  dS
2
2

t
0
  
Si on suppose que le condensateur est sans effet de bord, on aura E  u x
0
  Q
Et donc  E  dS 
0

E 
Q
 I , on aura  0 0
 dS  0 I
Et comme
2
t
t
F) Théorème de superposition
 

Si une distribution ( 1 , j1 ) produit un champ ( E1 , B1 )
 

Et une distribution (  2 , j2 ) un champ ( E2 , B2 )






Alors (.1  . 2 , . j1  . j2 ) produira un champ (.E1  .E2 , .B1  .B2 )
Remarque :
Le « principe » de superposition vu en électrostatique est devenu ici un théorème.


E
B
G) Couplage entre et .
1) Champ électromagnétique
Les équations de Maxwell–Faraday et Maxwell–Ampère montrent que les


champs E et B sont couplés. On a donc affaire à un individu physique, le champ


électromagnétique, et qui contient deux composantes, à savoir E et B
(C’est comme en mathématique pour des vecteurs : un vecteur est composé
de plusieurs composantes, qui n’ont aucun sens séparément)
En régime stationnaire, il n’y a plus de couplage
(Pour reprendre l’analogie, c’est comme si on se restreignait à une droite)
2) Transformation des champs
 Position du problème :
On considère deux référentiels galiléens R et R’, où R’ est en translation à la

vitesse V par rapport à R.
 
 
On note E , B le champ correspondant dans R, E ' , B ' dans R’.

  
- Dans R, on a la force de Lorentz F  q( E  v  B)

  
- Dans R’, on a la force de Lorentz F '  q' ( E 'v ' B' )
 Conservation de la charge : q  q '
 Transformation galiléenne :
- Formule de composition :
    
En relativité galiléenne, F  F ' , v  v '  V
       

Donc E  v 'B  V  B  E'v 'B' et ce v '
   
 
Par identification, on a donc E'  E  V  B et B '  B
- Discussion :
On considère un fil infini uniformément chargé de masse linéique  se

déplaçant à la vitesse V
Etude :

  
Dans R’, le fil est fixe et donc E ' 
u r , B' 0
20 r
  V 

Dans R, B  0
u  B'
2 r
- Conclusion : les formules de relativité galiléenne ne s’appliquent pas.
L’électromagnétisme est donc par essence relativiste.
 Transformation einsteinienne :
    
On a en général F  F ' , v  v '  V
On admet que

  V

E '  E   cB
c

 V 
cB'  cB   E
c
Remarque :
On voit ici qu’il aurait été plus commode de définir initialement le champ


magnétique comme étant « cB », et qui aurait été en plus homogène à E .
On obtient ainsi des formules symétriques.

V
Elles sont valables seulement au premier ordre en .
c
Dans l’exemple précédent :

  V
 
 
ur
On aura E  E '  cB'  E ' 
c
2 . 0 r


 V  V 
 
ur
Et cB  cB'  E '  u z 
c
c
2 . 0 r
 V  
 V 
u  0
u
Donc B  2
c 20 r
2 r
Remarque :
En fait, toute formule faisant intervenir la vitesse de la lumière est
nécessairement relativiste, et donc c’est la même chose pour  0 ou  0 (qui,
comme on va le voir, vérifient  0 0 c 2  1 )
3) Propagation des champs

 
B
On a   E  
t

 


E 

Et   B  0  j   0
t 



Pour E :


 
 
E 

On a   (  E )    0 j  0 0
t 
t 

 
    
Mais   (  E )  (  E )   2 E
 

2 
 2 E 
j
Donc  E  0 0 2 
 0
t
0
t


 
j
Soit E 
avec  0 0 c 2  1
 0
0
t

1 2
: opérateur d’alembertien,   2  2 2 )
c t
 
Ainsi, dans le vide   0 , j  0
 
Donc E  0 ; on reconnaît l’équation d’onde classique avec une célérité
1
.
c
(Rappel :
 0 0
Dans un milieu, on n’a plus l’équation d’onde classique : la propagation est
perturbée par la matière

 Pour B :

 
On trouve de la même manière B  0  j
On obtient ainsi une onde électromagnétique se déplaçant dans le vide avec
1
une célérité c 
 0 0
III Les potentiels
Remarque :
Les potentiels ne sont que des outils mathématiques, et on peut parfois trouver des
potentiels qui heurtent le sens physique, par exemple des potentiels donc l’effet semble


précéder la cause. Mais du moment que E et B sont corrects, ce n’est pas gênant.
A) Existence des potentiels
1) Rappel
  


En électrostatique, on a   E  0 , et donc il existe V tel que E  V

d  cte
On a même V  
40 r
 
  

 En magnétostatique, on a   B  0 , donc il existe A tel que B    A

 0

j
d




On a même A 
4  r
Ce potentiel–vecteur est toujours défini en général.

2) Potentiel vecteur


 
 A
B
  
On a   E  
t
t

   A  
Donc    E    0
t 


 A

 V
Ainsi, il existe V tel que E 
t



A
Ou E  V 
.
t
3) Conclusion

E correspond à
On peut penser que la composante longitudinale
du
champ


A
.
 V , et la composante transversale à 
t

 
On a ainsi trouvé une correspondance ( E , B)  ( A,V )
B) Jauges
1) Indétermination sur les potentiels
  

 
Si A est un potentiel vecteur, alors A'  A   pour tout  (r , t ) peut
aussi convenir.
- Mais V va aussi changer
:





A
A'
On aura E  V 
 V '

t
t




Donc V  V '
t


 
Ou V '  V  
t 


 f (t )
Et donc V '  V 
t
-
2) Définition




Une jauge, c’est un couple ( A, V )


Une transformation de jauge, c’est un changement ( A, V )  ( A' , V ' )
Condition de jauge : c’est une condition supplémentaire qu’on impose à
la jauge (par commodité)
C) Jauge de Lorentz
1) Condition de jauge de Lorentz
  1 V
0 .
La condition de jauge de Lorentz, c’est   A  2
c t
- Elle est déjà homogène.
- On verra qu’elle permet de simplifier souvent les calculs.
- En magnétostatique, on retrouve la jauge de Coulomb.
2) Existence
Il y a des solutions…
3) Non unicité
Il y en a même une infinité…
4) Equations aux potentiels
Les équations de Maxwell–Flux et Maxwell–Faraday sont contenues dans le

fait même d’utiliser A et V.
On a de plus :

    

E 

  E  ,   B  0  j   0
0
t 

 Equation de Maxwell–Gauss :

  
A  
On a     V   
t
0

  

  A  
Donc  2V 

t
0
Et, avec la jauge de Lorentz :

1  2V  
 2V  2 2 
c t
0

Ou V  
0

Equation de Maxwell–Ampère :


 
 1  
A 
On a   (  A)  0 j  2   V  
c t 
t 

   2 
   1 V  1  2 A
Donc (  A)   A  0 j   2
 2 2
 c t  c t
    1 V  
Mais comme    A  2
  0,
c t 



On reconnaît ici encore A  0 j

-
Discussion :
Le Laplacien en statique est remplacé par le d’Alembertien.

On a pu découpler A et V, ce qui est plus agréable pour les calculs.
La condition de jauge de Lorentz est relativiste.
5) Potentiel retardé

Solution des équations aux potentiels :

P
, j
M

 et j ne sont pas nécessairement stationnaires.

On cherche alors V ( M , t ) , A( M , t ) .
En statique, on a : (en notant r  PM )
1
 ( P)
V (M ) 
d

40
r


0
j ( P)
A( M ) 
d

4
r
On peut montrer que dans le cas général, les potentiels suivants sont
solution :


j ( P, t  cr )
0
A( M , t ) 
d
4 
r
1
 ( P, t  cr )
d
40 
r
 Interprétation :
Si il se produit une modification en P, elle ne se fera sentir en M que lorsque
l’information aura parcouru la distance, d’où le nom de potentiel retardé.
La solution obtenue est donc physiquement satisfaisante.
Mais dans les deux équations, seul c 2 intervient.

Ainsi, la même chose en remplaçant  ( P, t  cr ) et j ( P, t  cr ) par  ( P, t  cr )

et j ( P, t  cr ) est aussi solution. Mais cette solution est moins satisfaisante
physiquement, puisque cela signifie que la modification du potentiel en M se fait
sentir avant qu’elle n’ait lieu.
Rappel : les potentiels ne sont que des outils de calcul, et n’ont aucune
signification physique.
V (M , t ) 
D) Jauge de Coulomb
1) Jauge de Coulomb
 
On a, en jauge de Coulomb,   A  0
2) Equations aux potentiels

Pour V :
  
On a   E 
0

 
 A 


Donc    V   
 , soit  2V 
0
t  0
On obtient ainsi un potentiel instantané :
1
 ( P, t )
V
d

40
r

 Pour A : avec cette jauge, le calcul devient beaucoup plus compliqué :

 1  V
A   0 j  2 
c
t
IV Les équations de Maxwell dans les milieux
A) Dans un milieu quelconque
 
  
  E  , et   libre  lié On peut montrer qu’on a ici encore lié    P
0

 
B
, pas de changement.
E  
t
 
 B  0


 
  P

 


E 
 , et j  jlibre  jlié . Cette fois, jlié    M 
  B  0  j   0
t
t 

B) Dans un milieu LHI
1) En régime permanent
  
  
On a   E  libre ,   E  0
 0 r
 
 

Et   B  0 ,   B  0 r jlibre
2) En régime sinusoïdal
On suppose que toutes les fonctions de t varient sinusoïdalement.



Ainsi, s(r , t )  s(r , ) , avec s(r , t )  Re( se i.t )
  
On aura   E  libre où  r est complexe,
 0 r
 
Et   B  0 ,
 

Et   E  i B
 


Et enfin   B  0  r ( j libre  i 0 r E ) où  r est aussi complexe.
3) En régime variable

1
On peut utiliser la transformée de Fourier s(r , t ) 
2



s(r ,  )e i .t d
V Relation de passage du champ électromagnétique à une interface
2
1

2
1

 (r, t )
js ( r , t )

E
A) Champ .
1) Continuité de la composante tangentielle

 
B
E  
t
M2
M1
N2
N1

 
  
 
B 
d
 dS    B  dS
On a  E  dl     E  dS   
t
dt 



Et quand l’épaisseur tend vers 0, la surface devient de plus en plus petite et
le flux tend aussi vers 0.


Ainsi, ET2  ET1  0 .
2) Discontinuité de la composante normale
 Cas général :
On suppose qu’on est en régime sinusoïdal, ce qui est possible puisqu’on
peut passer ensuite à la transformée de Fourier.
 

On a alors   E 
 0 r
où  r est différent selon le milieu (mais constant
dans chacun puisqu’on suppose les milieux LHI)



Soit   ( r E ) 
0



  
Et on trouvera ici  r , 2 E 2   r ,1 E 1  n 
(  prend en compte uniquement
0
les charges libres)


 
D’où  r , 2 E 2   r ,1 E 1  n
0

Cas particulier :


 
Lorsque  r , 2   r ,1  1 , on a E 2  E 1  n
0

B
B) Champ .
1) Continuité de la composante normale

 


On a toujours ici   B  0 , donc Bn, 2  Bn,1  0
2) Discontinuité de la composante tangentielle
 Cas général :
 


  B  0 r j  i 0 r E


 
  
B

d
l


    B  dS

De plus, E est continu sur la composante tangentielle, et j   sur la

répartition, donc on peut enlever la contribution de E dans l’expression
 


  B  0 r j  i 0 r E et donc :

 B


 0 j
On a


r


 
BT , 2 BT ,1

 0 j s  n
Soit
r , 2 r ,1

Cas particulier :




Lorsque  r , 2   r ,1  1 , on a alors B 2  B1  0 j s  n
 Densité de courant surfacique :
En électrostatique, on trouve deux types de matériaux :
Les isolants, où il n’y a pas de déplacement possible, donc on peut imposer
une charge surfacique (ou volumique)
Les conducteurs, qu’on ne peut charger qu’en surface.
Pour l’électromagnétisme :
Pour avoir un courant, il faut forcément un conducteur
On va voir que dans le cas réel, lorsque le courant circule, il circule
nécessairement en volume, et donc qu’on n’a pas de relations symétriques entre

js et  .
- Selon la modélisation qu’on adopte, on peut quand même avoir des
courants considérés comme surfaciques : avec une feuille d’aluminium :

j
 
j  js
e

js
- Pour un conducteur volumique limité par une surface :




Si on a un courant surfacique, j   sur la surface ; mais j   .E et E
est fini. Ainsi :

(1) Pour un conducteur réel,  est fini, donc nécessairement j l’est aussi, et


 
BT , 2 BT ,1 
donc js  0 , soit

0
Et si  r , 2
r , 2 r ,1



  r ,1  1 , BT , 2  BT ,1  0

(2) Si on a un conducteur parfait,  est infini, et j prend des valeurs


infinies. Ainsi, à la surface, E est non nul donc j   et on a une
 
 
modélisation surfacique. Et à l’intérieur, E  0 donc j  0 .
Ainsi, en régime variable, la présence de courant surfacique est un cas
particulier, ou une conséquence de la modélisation choisie.
VI Equilibre, régime permanent, variable, quasi–permanent
A) Equilibre
1) Définition

 
C’est lorsque  est indépendant du temps et j (r , t )  0
On est alors en électrostatique.
2) Equations de Maxwell
     
  E  0 E 
0
    
  B  0 B  0
3) Champs


 
B0
Champ électrostatique.
B) Régime permanent
1) Définition

C’est lorsque  et j sont indépendants du temps.
On est alors en magnétostatique.
 
Et on a de plus   j  0 (conservation de la charge)
2) Equations de Maxwell
  
  
E 0
 E 
0
 
  
  B  0 j   B  0
3) Champs
Les champs sont découplés


 B est créé par j

 E est créé par  , c’est le même champ qu’un champ électrostatique.
C) Régime variable
1) Définition

C’est lorsque j et  sont quelconques.
2) Equations de Maxwell
Ce sont les plus générales

 
  
B
E  
E 
t
0

 

E   
 B  0
  B  0  j   0


t


3) Champs
Les champs sont couplés.
D) Régimes quasi–permanents
1) Approximation des régimes quasi-permanents (ARQP)
P
M

 (r , t )
 
j (r , t )
On a deux temps caractéristiques :

Le temps caractéristique  de variation de  et j .
Celui de propagation de P à M : r / c
Ce qu’on appelle l’approximation des régimes quasi-permanents, c’est
considérer que r / c  
C'est-à-dire que le retard en M est négligeable par rapport à la variation de

 et j .
2) Potentiels approchés

Pour les champs exacts, on avait :
V (M , t ) 
1
40

Et V    /  0 ,
 Avec l’ARQP :
 ( P, t  cr )
PM


A  0 j


d , A( M , t )  0
4


j ( P, t  cr )
d .
PM


0
j ( P, t )
On a V * ( M , t ) 
d
d et A * ( M , t ) 


40
PM
4
PM
Ainsi, le potentiel retardé devient un potentiel instantané.
Et on a alors les équations :


 2 
,  A*  0 j .
 2V * 
0
C’est donc comme si on considérait que la vitesse de la lumière est infinie.

(On peut vérifier que V * , A * vérifient toujours la jauge de Lorentz)
1
 ( P, t )


E
*
B
3) Champ
et * approchés.


 


A *
 On aura E*  V * 
et B*    A
t
 Equations de Maxwell :
 
-   B*  0

 
B *
-   E*  
t
Ces deux premières équations sont toujours rigoureuses
 
 1  2V * 
-   E*   2

 0 c t 2
0

 
 1 V *
-   B*  0 j  2
c
t

1 V *
Mais on ne peut pas ici négliger 2
:
c
t
 2
Pour le premier : on avait supposé que V 
 V
0
2
 1  2V 
1  2V  2
C'est-à-dire  V  2 2   V , soit

 .
c t
 0 c 2 t 2  0
Mais toutes les approximations faites agissent sur les dérivées d’ordre 2,

1  V
donc on n’a rien pour 2
.
c
t
4) Régime quasi-permanent magnétique « quasi–magnétostatique »
 Définition :

C’est quand on peut calculer B comme si c’était un champ magnétostatique.
C'est-à-dire :
 
  B*  0
 

  B*  0 j
Attention :

1 E
Ce n’est pas 2
qui est négligeable localement, mais sa contribution
c t
globale lorsqu’on va intégrer les relations. En fait, il aurait fallu quand même
l’écrire dans l’équation locale puis retirer le terme supplémentaire après calcul.

-
Conséquence sur les champs :

Sur le champ B : c’est comme un champ magnétostatique.
I (t )



On aura B * (t )  0 I (t )u
2 .r

- Sur le champ E :
 

  E* 
0 
 
B *
  E*  
t
 Conséquence sur les potentiels :


  
 2V *   , 2 A*  0 j
0


Ainsi, en découplant seulement partiellement E et B , on a totalement retiré
les temps de propagation.

 Conséquences sur j :
- Equation locale :
 
 

On a   B  0 j . Donc   j  0
- Conservation de la charge :
  
 j  0 .
On a d’autre part
t

Donc on peut négliger
; mais devant quoi ??
t
En fait, localement, ça n’a pas de sens de négliger ce terme supplémentaire :
Analyse unidimensionnelle :

j
x0
x0+L
 j

0
t x
Bilan :
x0  L 
dQ d x0  L
 
 .S .dx  
.S .dx  j ( x0 ) S  j ( x0  L) S
x0
dt dt x0
t
x0  L 
.dx
Donc j ( x0 )  j ( x0  L)  
x0
t
Si ce qui entre est très proche de ce qui sort, on a alors j ( x0 )  j ( x0  L) soit
x0  L 
j
 0 , et dans ce cas 
.dx est négligeable devant j ( x0 ) et j ( x0  L) .
x0
x
t
 

- On a   j  0 , donc j est à flux conservatif.
Ainsi, dans un fil électrique où on peut appliquer l’ARQP magnétique, le
courant est le même dans tout le fil à chaque instant, même si ce courant dépend
du temps.
 Principaux cas de l’ARQP magnétique :
- Induction électromagnétique :
Pour un solénoïde traversé par un courant non stationnaire, il créera un
champ magnétique variable, qui engendrera alors un champ électrique (vu en
complément de manière plus précise)
Plus généralement, quand le courant est dominant, c'est-à-dire quand
 .c  j
- Dans un conducteur ohmique :
On suppose qu’on est en régime sinusoïdal et que  r  r  1
On a


 


On a   B*  0 j  i 0.E


0
Et j   .E , avec  
.
1  i.
On va rechercher dans quels cas on peut appliquer l’ARQP magnétique :


0
On doit donc avoir j  i 0.E , c'est-à-dire
 i 0 , ou en module
1  i.
0
  0
1   2 2
Pour un bon conducteur,  0 ~ 106 S.m 1 , et  0 ~ 10 11SI ,  ~ 10 15 s
Pour appliquer l’ARQP, il faut donc que   1016 rad.s 1 .
On peut donc l’appliquer tout le temps dès qu’on a affaire à un métal.
5) Régime quasi-permanent électrostatique « quasi–électrostatique »
 Définition :

E comme si c’était un champ électrostatique.
C’est lorsqu’on peut calculer

  



A
On a alors E*  V * 
 V * , soit   E*  0
t
 Conséquence sur le champ :

- Pour E * :
    

  E*  0 ,   E* 
0

- Pour B * :

 
 
 1 E *
  B*  0 ,   B*  0 j  2
c t


On a donc ici encore découplé partiellement E et B .
 Conséquence sur les potentiels :


  
 2V   ,  2 A  0 j
0
Même remarque que pour l’ARQP magnétique.
 Cas d’application :
- lorsque  est non nul et j   .c (c'est-à-dire que les charges dominent)
- Pour un condensateur.
VII Symétries et antisymétries du champ électromagnétique
Dans le cas magnétostatique ou électrostatique, on avait des plans de symétrie
/d’antisymétrie pour des courants ou des charges.

Ici, on ne peut plus considérer des symétries pour  et j indépendamment l’un de
l’autre, et un plan d’antisymétrie seulement à un instant t ne suffit pas non plus.
A) Répartitions de charges et de courants symétriques

Pour un plan  de symétrie à la fois pour j et  à tout instant.
1) Potentiels

j ( P, t  cr )
On a V 
 PM d
40  PM

Donc si  est un plan de symétrie pour  et j à tout instant, alors c’en est

un pour V et A aussi.
1
 ( P, t  cr )
 
d , A  0
4
2) Champs
  
On a B    A .


Donc tout plan de symétrie pour A est d’antisymétrie pour B .



A
Et E  V 
, donc tout plan de symétrie pour A et V en est aussi un
t

pour E .

( , j )  

E
 

B
 
3) Réciproques
  

Si  est un plan de symétrie pour E , alors   E 
donc c’est aussi un
0

plan de symétrie pour  . Si  est un plan d’antisymétrie pour B et de symétrie

 

 1 E

pour E , alors   B  0 j  2
donc c’est un plan de symétrie pour j .
c t
 
( E , B ) (,) (, )




j


B) Répartition de charges et de courant antisymétriques.
Analogue
VIII Compléments
A) ARQP magnétique et électrostatique
1) Solénoïde en régime variable
On considère un solénoïde infini, dont l’axe est selon Oz .
 En régime permanent :


On a B  0 .n.I .uz (pour r  R )
 
Et E  0
 En régime quasi–permanent :
- Charges et courants :
Pour un bon conducteur,   0 .
 
 

Donc   j  0 , et   B  0 j donc le courant dans le solénoïde ne dépend
que de t : l’intensité est la même dans tout le fil.

- Champ B :


On a B(t )  0 .n.I (t ).uz

- Champ E :
(1) Symétries :

Tout plan contenant z est un plan d’antisymétrie pour  et j


Donc E  E (r , t )u
 
(2) On doit avoir   E  0 , équation que vérifie bien la forme proposée.

 
B
(3) Et   E  
:
t

 
  
 
B 
d
On a  E  dl     E  dS   
 dS    B  dS
t
dt
Donc, pour un cercle entourant l’axe Oz et de rayon r :
d
2 .r.E   ( 0 .nI (t ). .r 2 )
dt

r
dI 
Soit E   0 n u
2
dt
Amélioration :

On sait que B n’est pas exact, puisqu’on a en fait

 
 1 E
  B  0 j  2
c t

On peut ainsi ajouter le champ E calculé et trouver ainsi un terme correctif

pour B etc.
On obtient ainsi un champ de plus en plus précis (sous forme d’une série)
2) Condensateur en charge


I(t)

uz


On cherche E et B à l’intérieur du condensateur (on néglige les effets de
bords)
 En régime statique :
 
  
On a I  0 , donc E  u z et B  0
0
 En régime quasi–permanent :

- E* :
 

  E* 
0
  
  E*  0

 (t ) 
Donc E * (t ) 
uz
0

- B* :
 
On a   B*  0

 
1 E
Et   B*  2
c t


(1) Tout plan contenant uz est un plan de symétrie pour j ,  .


Donc B  B(r, z, t )u
(2) Pour un disque centré en Oz de rayon r :
 
1 d

B  2 .r  2  E  dS  2  (t ).r 2
c dt
c 0
 r
d 
u
Soit B   0
2
dt

De même, on peut ici apporter une correction à E …

B) Emission isotrope d’une source radioactive  .
1) Modèle

v
Q(t)
e-
On suppose que l’émission est isotrope, et on néglige les interactions des
électrons entre eux et avec la source.

Ainsi, la vitesse v ne dépend ni de la position de l’électron ni du temps.
  
On cherche alors  , j , E , B
2) Calcul de  (charge d’espace)
On considère un volume compris entre deux sphères de rayons r et r  dr .
Ce volume contient des électrons, mais ces électrons sont ceux émis par la
source pendant le temps correspondant au parcours de l’épaisseur sphérique, c'estdr
à-dire qu’on a une charge dq   .(e)
où  est le nombre d’électrons émis par
v
seconde.
 .e
dq
dQ
  .e )
Ainsi,  
, soit   
(et
2
2
4 .r v
4 .r dr
dt

3) Calcul de j .


 .e 
On a j   .v  
ur
4 .r 2

B
4) Calcul de .


Comme on a la symétrie sphérique, B  B(r )ur
 
 
Mais de plus   B  0 , donc B  0

5) Calcul de E .


On a E  E ( r )u r
Théorème de Gauss :
Pour une sphère de rayon r,
r
E  4 .r 2 
Q(t )    .4 .r 2 dr
0
0

Q(t  r / v)
0
 Q(t  r / v) 
ur
Donc E 
40 r 2
6) Vérification de l’équation de Maxwell–Ampère ?
  
On a   B  0

 1 E
 
 .e  1 dQ
1
Et 0 j  2
  0
u


u
r
r 0
c t
4 .r 2
c2 
dt 4 . 0 .r 2
 .e
C) Champ électrique rotationnel
 
 
Un courant j1 (r ) permanent crée un champ B1 ( r ) (donnés)
   t
 On suppose que   0 , j  j1 (r ) 

 
 B(r , t )
On cherche alors le champ    créé dans l’espace.
 E (r , t )

1) On suppose le champ électrique stationnaire
 
 

On a alors les équations   B  0 ,   B  0 j .
 
  t
On en connaît une solution, à savoir B(r , t )  B1 (r )

2) Détermination du champ électrique

On a pour E les équations :



 

  

B
B1 (r )
B1 ( r )
E 
 0, E  

 0 J où J  
0
0
t

On a donc un champ indépendant du temps, et l’hypothèse est validée.

De plus, E a une structure de champ magnétostatique, c'est-à-dire qu’on a
un champ rotationnel.

3) Si le courant j1 correspond à celui d’un solénoïde de rayon R.


On a alors B1  0 jS uz à l’intérieur

j 
Et donc J   s u z

   0 js R 2 
   0 js 
r.u , et pour r  R , E 
.u
Ainsi, pour r  R , E 
2
2
r
Téléchargement