GYMSANTE - Gymsanté

publicité
GYMSANTE
L’ENERGIE ELASTIQUE
CONTRIBUTEURS
Sébastien BÊME
ÉTUDES UTILISÉES
The Role of Elastic Energy in Activities with High Force and Power Requirements: A Brief Review
Jacob M. Wilson1 and Eamonn P. Flanagan2
1
Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, Florida;
Biomechanics Research Unit, College of Science, University of Limerick, Limerick, Ireland
(C) 2011 National Strength and Conditioning Association
2
ABSTRACT
L’énergie élastique, que les pratiquants ressentent lors des cycles d’étirement-raccourcissement ou plus communément
excentrique-concentrique est une énergie qui s’emmagasine durant une période du contre mouvement pour se libérer lors de
la phase concentrique d’un travail musculaire. Elle dépend de nombreux paramètres tels que la raideur musculaire, la vitesse
du cycle étirement-raccourcissement, la vitesse de transition entre les deux phases de travail, etc. Nous voyons, au travers
cet article que l’usage de l’énergie élastique est d’une importance vitale pour quasiment tous les sportifs, tant au niveau de
la performance (l’énergie élastique induit la raideur musculaire, donc l’optimisation de la force pour l’explosivité et la
résistance, de l’utilisation des ressources énergétiques pour l’endurance) que pour également une protection pour les
articulations notamment en favorisant l’accélération des forces de leviers entourant les articulations.
L’étude qui nous sert de support (The Role of Elastic Energy in Activities with High Force and Power Requirements: A
Brief Review, Jacob M. Wilson and Eamonn P. Flanagan, 2008) nous permet de faire un tour d’horizon de l’évolution du
savoir encore faible sur cette énergie.
Nous voyons notamment l’importance évidente des exercices visant à augmenter la raideur musculaire et les vitesses de
changements d’états, tels que les exercices de pliométrie qu’il convient de placer en début de séance pour des raisons de
sécurité ; ainsi que de la nécessité de faire très attention aux exercices d’étirements à l’échauffement.
Nous observons également le besoin d’annuler l’idée reçue selon laquelle le surplus de force (l’énergie élastique) serait dû à
l’activation des réflexes musculaires. En effet, nous montrons que l’énergie élastique et l’activité des réflexes musculaires
peuvent-être complémentaires, mais ne sont pas une seule et même chose.
Enfin, la connaissance de cette force est primordiale dans l’établissement des exercices de préparation physique afin de la
réduire au maximum lorsque les praticiens souhaitent une prédominance autre dans l’amélioration des qualités musculaires
des athlètes.
En pratique, nous montrons l’énorme intérêt du travail isométrique, stato-dynamique et du Static pour l’amélioration de
cette importante qualité musculaire.
Copyright © BÊME Sébastien Les copies non autorisées de cet article sont interdites.
Gymsanté – 04/2011
GYMSANTE
INTRODUCTION
Lorsque nous travaillons en sport, nous ressentons tous le fait que nous produisons plus de force en effectuant un cycle
étirement-raccourcissement par rapport à un travail exclusivement concentrique. Ce fait n’est pas uniquement visible lors
des exercices de musculation, mais également sur les exercices de courses, de nage, de sauts, etc. Nous savons, grâce à
différentes études que cela est dû à l’énergie élastique qui est emmagasinée durant la phase excentrique et restituée, telle une
catapulte, lors du démarrage de la phase concentrique.
Certains exercices, comme les exercices de pliométrie, améliorent ce retour de force en rendant les groupes musculaires plus
raides, tendus ; favorisant ainsi les transmissions de force au même titre que l’effort est plus facilement et rapidement
transmis grâce à un levier rigide plutôt que souple.
Mais comment cette énergie s’emmagasine-t-elle, comme se libère-t-elle et enfin comment l’améliorons-nous ? Telles sont
les questions auxquelles tente de répondre cet article.
Résumé(s) de(s) étude(s) utilisée(s)
“Wilson, JM and Flanagan, EP. The role of elastic energy in activities with high force and power requirements: A brief
review. J Strength Cond Res 22(5): 1705-1715, 2008-The purpose of this article is to provide strength and conditioning
practitioners with an understanding of the role of elastic energy in activities with high force and power requirements.
Specifically, the article covers 1) the nature of elasticity and its application to human participants, 2) the role of elastic
energy in activities requiring a stretch-shorten cycle such as the vertical jump, 3) the role of muscular stiffness in athletic
performance, 4) the control of muscular stiffness through feedforward and feedback mechanisms, and 5) factors affecting
muscular stiffness. Finally, practical applications are provided. In this section, it is suggested that the storage and reuse of
elastic energy is optimized at relatively higher levels of stiffness. Because stiffness decreases as fatigue ensues as well as
with stretching before an event, the article emphasizes the need for proper preparation phases in a periodized cycle and the
avoidance of long static stretches before high-force activities. The importance of teaching athletes to transition from
eccentric to concentric movements with minimal time delays is also proposed due to the finding that time delays appear to
decrease the reuse of elastic energy. In addition to teaching within the criterion tasks, evidence is provided that minimizing
transitions in plyometric training, a technique demonstrated to increase musculotendinous stiffness, can optimize power
output in explosive movements. Finally, evidence is provided that training and teaching programs designed to optimize
muscular stiffness may protect athletes against sports-related injuries.”
(C) 2011 National Strength and Conditioning Association
Copyright © BÊME Sébastien Les copies non autorisées de cet article sont interdites.
Gymsanté – 04/2011
GYMSANTE
DÉVELOPPEMENT
Base de connaissance existante
Dans notre modèle usuel (Hill, The heat of shortening and the dynamic constants of muscle, 1938) de représentation de la
force musculaire, nous avons deux forces en série (la force contractile-CE et la composante élastique SE ; ainsi qu’une
composante élastique-PE en parallèle. La somme des 3 composantes donnant la production de force d’un levier musculaire.
Schématisation du modèle de Hill
(Issue de “The Role of Elastic Energy in Activities with High Force and Power Requirements” A Brief Review, Jacob M. Wilson and Eamonn P. Flanagan, 2008 )
Nous voyons que la force est la somme des composantes contractiles plus la composante élastique (CE+SE) favorisée par la
composante élastique en parallèle (PE). En conséquence, nous voyons également que quelque soit l’intérêt pour un sport, il
est absolument nécessaire de travailler et d’améliorer les 3 composantes, puisque chacune d’elle induira un potentiel maillon
faible (la force sera la plus faible valeur entre CE+SE et PE). Traditionnellement, nous donnons à la SE une valeur
tendineuse et interne au muscle (par exemple la titine (=connectine)) et à la PE une valeur conjonctif (tissu conjonctif
musculaire).
Ce modèle est valable en dehors des situations particulières telles que le tétanos, la survie, etc.
Cycles étirements-raccourcissement
Nous savons que la force déployée durant une phase concentrique est plus importante si elle a été préalablement initiée par
une phase excentrique (étirement). La base actuellement utilisée sur les terrains d’entraînement est que ce surplus de force
est dû à plusieurs facteurs :


Les réflexes musculaires provoquant des réactions importantes se cumulant aux forces contractiles dans le cas de
réflexes sur le muscle au travail ; se déduisant aux forces contractiles dans le cas de réflexes sur les muscles
antagonismes.
L’étirement des parties non contractiles, durant la phase excentrique (tendons, aponévrose, etc.) engendre un retour
à la position de repos (cumulatif à la force contractile).
Le rôle des réflexes est confirmé au niveau de la pratique par une augmentation de la force en fonction de la vitesse du cycle
étirement-raccourcissement (plus l’athlète va vite, plus il peut engendrer de force – de manière non proportionnelle –
induisant la force de réaction des réflexes musculaires.
Le rôle des tensions des éléments non contractiles semblent se confirmer par les études montrant la nécessité d’une raideur
musculaire importante pour une performance liée à la force, à l’explosivité ; études montrant également la baisse de force
immédiate après certains étirements/assouplissements.
La raideur musculaire
La raideur musculaire est définie par la capacité d’un corps (muscle) à s’opposer à une déformation (étirement, torsion,
compression). Nous savons que la raideur est un élément important dans la contraction musculaire (vitesse de transmission
des efforts de contraction aux articulations, protection desdites articulations lors des réflexes musculaires pour protéger les
ligaments). Néanmoins, nous ne mélangeons pas raideur musculaire et raideur articulaire ; laquelle est impropre à la
Copyright © BÊME Sébastien Les copies non autorisées de cet article sont interdites.
Gymsanté – 04/2011
GYMSANTE
performance puisqu’elle engendrera un besoin supplémentaire de production de force (donc une baisse de performance ou
d’économie d’énergie) pour se mouvoir.
Les études démontrant l’aspect négatif des étirements sur la performance immédiate sont maintenant légions; mais montrant
également une nécessité de souplesse articulaire pour permettre des mouvements fluides et en amplitude complète.
Le modèle habituel de ressort-masse symbolisant la raideur musculaire semble progressivement disparaître pour arriver à un
modèle plus proche de la réalité : Ressort-Masse-Articulation. Néanmoins, le principe de fonctionnement n’est pas remis en
cause, il induit simplement des modifications très importantes en fonction des angles de l’articulation (même pour de faibles
variations d’angles).
L’importance de la raideur musculaire se voit surtout dans la vitesse de transmission des forces générées par les muscles. En
effet, une raideur faible induira des délais de réponses (mouvement des articulations) plus longs entre la contraction et
l’apparition de la conséquence. Cela implique directement les temps de réactions (départs de courses, réactions à une action
de l’adversaire), la force élastique, l’économie d’énergie durant les exercices moteurs (un muscle possédant une raideur
importante permettra le même geste avec moins de déperdition, donc moins de dépense énergétique).
Apport de l’étude
L’étude nous permet une centralisation des informations liées à l’énergie élastique, tout en apportant des éclaircissements
extérieurs notamment sur l’intérêt de la raideur musculaire. Ainsi, en supplément des connaissances de bases existantes,
nous pouvons entrevoir que :
-
-
-
-
-
L’énergie élastique est liée aux cycles d’étirement-raccourcissement.
L’énergie élastique variera en fonction de la vitesse (temps d’étirement) et du délai de réaction (temps du
changement de direction) ; en augmentant la vitesse de l’étirement, nous augmentons la force de réponse ; en
diminuant le délai de réaction, nous augmentons la libération de l’énergie élastique emmagasinée durant
l’étirement.
L’énergie élastique n’a pas de lien avec les réflexes myotatiques : un électromyogramme ne montre aucune
différence durant la phase concentrique d’un saut avec et sans contre élan. Ceci est corroboré par les études
montrant que l’énergie élastique existe (et est plus générative de démonstration de force) lors des phases de
transitions rapides (<25ms) alors que le réflexe musculaire le plus rapide nécessite un temps de réaction supérieur à
30 ms.
Il n’y aurait pas de différence significative entre des sujets ayant des muscles à prédominance rapide ou lente
durant les cycles rapides. Par contre, pour les cycles lents, les athlètes à prédominance lente sont favorisés. Cela
induit que pour les cycles d’étirement-raccourcissement rapide, le stockage et la libération des forces élastiques ne
se fait pas au niveau des éléments contractiles (ponts d’actine-myosine) ; alors que sur des cycles lents (temps de
contact au sol >25ms), si les ponts n’ont pas été décrochés, il semblerait que cette énergie soit stocké et libéré à cet
endroit (d’où l’intérêt des fibres lentes sur les cycles lents). Attention, nous attirons l’attention qu’un cycle lent
n’est pas une décomposition de mouvement au ralenti (un saut vertical avec contre élan est considéré comme lent
par les auteurs des différentes études).
La fatigue engendrant une baisse de la raideur musculaire montre une baisse de la force élastique et un besoin
d’allongement des foulées pour les athlètes pratiquants la course à pied, donc augmentant le temps de réaction au
sol. L’objectif sera donc d’augmenter la capacité de raideur musculaire dans le temps (maintien de celle-ci sur une
durée plus longue). Les exercices visant à promouvoir cette énergie élastique sera optimisée dans l’entraînement
avec une utilisation en début de séance afin d’avoir la plus grande raideur possible.
En observant les allongements, raccourcissement ou maintien isométrique du corps charnu et du tendon des
muscles jumeaux de la jambe lors de la marche, les auteurs concluent que durant la phase concentrique les tendons
commencent à se raccourcir avant le corps charnu qui lui produit une force isométrique très intense (plus
importante que lors du raccourcissement). Avec un cycle de pré-étirement, le tendon s’étire plus que le corps
charnu et travaille sur une amplitude de raccourcissement plus importante dans le démarrage de la phase
concentrique. Plus la vitesse d’étirement augmente, plus le tendon s’étire par rapport au corps charnu (qui lui-
Copyright © BÊME Sébastien Les copies non autorisées de cet article sont interdites.
Gymsanté – 04/2011
GYMSANTE
même s’étirera). Ces hautes vitesses induisent une mise en place de la longueur du corps charnu qui s’ajuste pour
optimiser le nombre de ponts actines-myosine, permettant de supporter le raccourcissement violent du tendon.
Base de connaissance résultante
L’apport de cette étude est d’une grande importance pour les préparateurs physiques et les entraîneurs. En effet, l’énergie
élastique, qui n’est pas une force résultante des forces mises en jeu lors des réflexes musculaires mais cumulative avec elles,
permet des accroissements de force phénoménaux lors des gestes sportifs, des gains d’énergies permettant également d’aller
plus loin dans l’effort pour une même balance dépense/performance (sports endurants notamment). Il est également
primordial de connaître cette dernière afin de l’annihiler lors d’exercices ciblant des qualités autres.
En reprenant le modèle de Hill décrit précédemment, nous observons grâce aux apports de l’étude et des connaissances de
base initiales, que la force élastique est :






Différente de la force générée par les réflexes myotatiques
Cumulative avec ces derniers, notamment lors des cycles d’étirement/raccourcissement lents (durée de transition
ou de contact au sol supérieur à 25 ms tel que le saut en hauteur avec contre élan).
La force élastique n’est pas localisée dans la CE, donc dans les ponts actine-myosine.
La force élastique nécessite une raideur musculaire importante (les temps de changement de sens réduits
impliquent un résultat très rapide dans les mouvements articulaires faisant suite à la contraction. Inversement, en
augmentant la raideur nous augmentons la force élastique.
En observation des muscles jumeaux de la jambe, nous pouvons voir que la force élastique est d’abord transmise
par la SEC (tendons notamment) puis la PEC (aponévrose notamment) dans l’ordre de décroissante du temps
d’étirement et de la transition étirement/contraction. Le support de retour de force élastique se faisant par une
contraction isométrique très forte (beaucoup plus que pour la contraction à suivre).
La raideur est un état nécessaire à l’utilisation de l’énergie élastique.
Copyright © BÊME Sébastien Les copies non autorisées de cet article sont interdites.
Gymsanté – 04/2011
GYMSANTE
MISE EN PRATIQUE
Publics visés
Tout pratiquant sportif, quel que soit le sport et le niveau.
Procédure(s) d’utilisation
L’augmentation et la gestion de la force élastique semblent pouvoir se faire autour des techniques suivantes (elles possèdent
d’autres intérêts qui ne sont pas exposés afin de rester centré sur la force élastique) :
-
-
-
-
Isométrie de maintien (augmentation de la tenue du muscle lors du pré-raccourcissement de la SEC ; ainsi qu’une
légère augmentation de la force contractile de maintien durant ce pré-raccourcissement – L’intérêt sera surtout de
limiter le possible effet maillon faible que la phase isométrique pourrait être durant le changement
excentrique/concentrique).
Static (mêmes intérêts que l’isométrie, mais de manière beaucoup plus grande, augmentant significativement cette
transition isométrique durant le mouvement – L’intérêt sera d’augmenter significativement la force de maintien
durant cette zone de changement de direction permettant par la suite d’augmenter la raideur sans risques et la force
élastique sans problème).
Stato-dynamique simple (même raison que pour l’isométrie, avec une augmentation de la force contractile durant
le raccourcissement du corps charnu).
Stato-dynamique à élan (à l’inverse de ce qui précède, le stato-dynamique à élan permettra de travailler la brève
phase de transition puis de finir sur le concentrique explosif – L’intérêt sera la spécification de la phase de
transition en limitant au maximum l’amplitude de la modification articulaire permettant ainsi d’apprendre à réduire
au maximum la durée de cette phase).
Pliométrie (augmentation de la raideur et de la rapidité de la phase de transition de sens – La pliométrie de
travaillant avec ou sans excentrique, l’intérêt de cette technique d’entraînement sera de travailler la raideur
musculaire (sans excentrique) et la vitesse de transition (avec excentrique court).
Voyons un peu plus en détail ces 4 techniques du point de vue de la force élastique.
L’isométrie de maintien
Pour la spécificité de la force élastique, nous avons vu que durant le démarrage de la phase concentrique, le tendon se
raccourcit (mise en place de la restitution de l’énergie élastique emmagasinée) alors que le corps charnu reste sur sa
longueur, servant surtout de soutien, de base de fixation du tendon. Pour maintenir cet isométrique, la force contractile
(ponts actine-myosine) est très importante (quantité de force), beaucoup plus que par la suite durant la phase de
raccourcissement du corps charnu.
Le travail de l’isométrie de maintien permettra de limiter la fatigue sur cette isométrie, afin de se mettre à niveau avec la
force de tension du tendon (étirement puis raccourcissement).
L’usage habituel de l’isométrie de maintien montre un réel intérêt pour des gains de force rapides, mais de faible amplitude,
et de faible durée (les gains stagnent très vite). Ajoutés à la difficulté de transfert de cette force isométrique à une force
dynamique, nous retrouvons ici ce que nous venons de voir.
Il conviendra de travailler l’isométrie de maintien dans la zone précise de transition afin de spécifier les gains acquis.
Le Static
Pour les mêmes raisons que pour l’isométrie de maintien, mais à des niveaux beaucoup plus hauts de développement de la
force contractile isométrique, le Static permettra de développer fortement la puissance du corps charnu sur la zone de
transition, permettant non plus d’être le maillon faible de celle-ci, mais de prendre de l’avance afin d’amener le tendon à la
raideur nécessaire par la suite.
Copyright © BÊME Sébastien Les copies non autorisées de cet article sont interdites.
Gymsanté – 04/2011
GYMSANTE
Le Stato-dynamique simple
Le stato-dynamique simple est un maintien isométrique de quelques secondes suivies d’une forte contraction (explosive)
concentrique. Cette technique d’entraînement permet de travailler le muscle sur l’isométrie (comme l’isométrie de maintien,
mais sur des temps plus courts) suivie d’une phase explosive concentrique redynamisant le muscle. Ce travail permet de
spécifier le travail du corps charnu au moment après la transition excentrique-concentrique, sans faire intervenir la force
élastique, permettant de développer les autres maillons faibles de la force élastique ainsi que la qualité contractile du muscle
hors force élastique.
Le Stato-dynamique à élan
Le Stato-dynamique à élan s’exécute comme le simple, en ajoutant une très brève phase excentrique entre l’isométrique et le
concentrique explosif. Ce contre élan change totalement la finalité de l’exercice. En effet, il permettra l’apprentissage de la
réduction de la phase de transition et l’enchaînement transition-concentrique final. Cet exercice servira surtout à utiliser la
raideur acquise ainsi que la force isométrique du corps charnu. Il permet également, dans un état de pré-fatigue léger
(isométrie de quelques secondes) d’enchaîner avec le cycle étirement-raccourcissement.
La Pliométrie
La pliométrie travaillera fortement la raideur musculaire, avec en plus des variantes possibles. Elle peut s’exécuter de 3
manières différentes : avec ou sans phase excentrique et lorsqu’il y a phase excentrique, avec ou sans phase concentrique.
Par exemple sur un saut en contre bas, l’athlète peut rebondir sans déformation des angles hanche-genoux-chevilles (A),
avec déformation c’est-à-dire en faisant un léger contre saut (B). Il peut aussi simplement se laisser tomber sans rechercher
un saut derrière (C).
La solution A permettra de travailler la partie concentrique (depuis la fin de la transition excentrique-concentrique jusqu’à
l’explosion concentrique) avec une très forte consonance raideur musculaire.
La solution B permettra de travailler la rapidité de la phase de transition, l’apprentissage de l’emmagasinage de la force
élastique et la rapidité de sa restitution. La raideur sera travaillée de manière légèrement moins forte qu’avec la solution A.
La solution C, à l’inverse de la solution A, travaillera toute la phase excentrique jusqu’au début de la zone de transition
excentrique-concentrique. Cet exercice travaillera moins la raideur que les solutions A et B.
Apport(s) attendu(s)
Le travail de la force élastique sans son ensemble (raideur, vitesses d’exécutions des cycles étirements-contraction, etc.)
permettra une augmentation de la fréquence gestuelle, une diminution du temps de réaction entre la contraction musculaire
et la mobilité de l’articulation, une augmentation de la capacité générer des gestes rapides à moindre coût énergétiques
(explosivité, capacité de changements de directions rapides, etc.).
Nous avons beaucoup parlé de force. Il est important de se rappeler que la course d’endurance, par exemple, est une force de
fable intensité et longue. L’amélioration de la force élastique permettra un rendement musculaire accrue, générant plus de
performances (à condition que les charges soient adaptées à la pratique sportive et soient non maximales) donc une capacité
à durer à un haut niveau.
Le principal étant que les athlètes comprennent parfaitement ce que les préparateurs et entraîneurs attendent des exercices :
la réduction maximale du temps de contact au sol, donc de la vitesse de la zone de transition (recherche de la rapidité du
mouvement avant la performance mesurable). Ainsi, l’athlète apprendra à limiter l’amplitude du changement d’angle de
l’articulation concernée (la cheville pour la course, par exemple) sans réduire l’amplitude du mouvement global (hanchegenou pour ce même exemple).
Copyright © BÊME Sébastien Les copies non autorisées de cet article sont interdites.
Gymsanté – 04/2011
GYMSANTE
DISCUSSION
La raideur musculaire est définie par la capacité d’un corps (muscle) à s’opposer à une déformation (étirement, torsion,
compression). La force élastique est une force permettant à un corps de retrouver son état d’origine (pour nous la longueur
après étirement, la forme homogène après une torsion). La force élastique étant plus forte avec une forte raideur, ainsi que
sur de très courts cycles d’étirement-raccourcissement, nous comprenons que la raideur influence favorablement le niveau
de la force élastique. Néanmoins, il serait néfaste de penser que seule la raideur influence sur cette dernière. La vitesse de la
phase excentrique ainsi que de la transition y contribuent pour beaucoup, notamment dans l’emmagasinage et la vitesse de
restitution. La raideur semble surtout intervenir sur la quantité de force élastique potentielle.
Ainsi, lors des différentes phases de préparation physique, il sera négatif de rechercher exclusivement la raideur, risquant, à
l’extrême limite, de faire croire aux athlètes que l’absence de souplesse ou la raideur engendrée durant les exercices
(congestion par exemple) sont les facteurs clés de la force élastique.
Élargissement, perspectives
Dans la préparation physique, il est souvent recherché le travail spécifique (tel que la force élastique) dans les conditions de
compétitions à savoir la fatigue (par exemple en football, en milieu/fin de match pour les démarrages ou changements de
sens de course). Les auteurs de l’étude ayant servi de support insiste particulièrement sur le vide existant autour des études
pouvant éventuellement montrer la présence ou non de risques liés à l’entraînement de cette qualité en état de fatigue.
En attendant ces possibles études, et devant la nécessité de certains sports à prendre ce risque, il conviendra de choisir des
exercices simples (faible coordination par exemple) ou travaillant la raideur sans cycle de pré-étirement comme par exemple
avec le Static ou le stato-dynamique (préférant ainsi les pré-étirements pour le début de l’entraînement, lorsque l’athlète est
frais et apte à gérer de multiples contraintes).
Copyright © BÊME Sébastien Les copies non autorisées de cet article sont interdites.
Gymsanté – 04/2011
Téléchargement