TADE : TESTS D’HYPOTHÈSES
MARK ASCH
Une hypothèse statistique est une supposition concernant la distribution d’une
variable aléatoire. Par exemple, on suppose que la moyenne d’une distribution est
égale à 5.Un test d’hypothèse est une procédure dans laquelle un échantillon est
utilisé afin de découvrir si l’on peut accepter l’hypothèse (supposer qu’elle est vraie)
ou si l’on doit la rejeter (supposer qu’elle est fausse). Les tests sont très importants
dans la prise de décisions. Par exemple, dans la décision de mettre un nouveau mé-
dicament sur la marché à la suite des essais cliniques, dans la décision de distribuer
un lot de pièces fabriquées sur une chaîne de production (contrôle de qualité), etc.
Les sources typiques des hypothèses sont :
(1) Une exigence de qualité.
(2) Les valeurs d’une expérience précédente.
(3) Une théorie que l’on voudrais vérifier.
(4) Une conjecture basée sur des observations.
Nous risquons de commettre deux types d’erreurs dans un test d’hypothèse de
θ=θ0contre θ=θ1.
Erreur de Type I: L’hypothèse est vraie, mais elle est rejetée parce que
ˆ
θ > c . La probabilité d’une tel erreur est
P(ˆ
Θ> c)θ=θ0=α
ou αest le niveau du test, cest la valeur critique et ˆ
θest une valeur observée
de la variable aléatoire ˆ
Θ.
Erreur de type II: L’hypothèse est fausse, mais elle n’est pas rejetée parce
que ˆ
θc. La probabilité d’une tel erreur est
P(ˆ
Θc)θ=θ1=β .
La puissance du test η= 1βest la probabilité d’éviter une erreur de type II. Nous
voulons que la puissance soit élevée pour un bon test. Cependant, la condition que
αsoit petit et que ηsoit grande est contradictoire. En réalité, nous sommes obligés
à trouver un compromis entre les deux.
En résumé : faire un test statistique, c’est choisir une hypothèse nulle, une sta-
tistique et une zone de rejet peu probable (p) quand l’hypothese nulle est vraie et
probable quand une hypothèse alternative precisée est vraie.
(1) Si la valeur calculée tombe dans la zone de rejet, on rejette l’hypothèse
nulle au profit de l’alternative. Si l’hypothèse nulle est fausse, tant mieux.
Si elle est vraie, on a commis une erreur de première espèce. La probabilité
Date: Janvier 2012.
Module TADE, EDSS, Université de Picardie Jules Verne.
1
TADE : TESTS D’HYPOTHÈSES 2
20 30 40 50 60 70 80 90 100 110
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
θ0 θ1
c
α
β
Figure 0.1. Test d’hypothèse entre H0:θ=θ0et H1:θ=θ1
de se tromper est p. Si pest très faible, pas de problème. Si pn’est pas très
faible et qu’on risque sa tête, il vaut mieux réfléchir encore.
(2) Si la valeur calculée ne tombe pas dans la zone de rejet, on accepte l’hy-
pothèse nulle. Si elle est vraie, tant mieux. Si elle est fausse, on a commis
une erreur de seconde espèce. Si on sait calculer son risque, on prend une
décision sérieuse. Si on n’a aucune idée du risque de se tromper, il vaut
mieux ne rien dire.
Exemple 1. Test pour la moyenne d’une distribution normale avec variance connue.
Soit XN(µ, σ2)avec σ2= 9 . Avec un échantillon de taille n= 10 , tester l’hy-
pothèse
H0:µ=µ0= 24
contre les trois alternatives
H1: (i)µ > µ0,(ii)µ < µ0,(iii)µ6=µ0
au niveau α= 0.05 .
Une estim\’{e} de la moyenne est
¯
X=1
n(X1+... +Xn).
Si l’hypothèse est vraie, ¯
Xest normale avecµ= 24 et σ2/n = 9 [démonstration
...]
Cas (i) :
P(¯
X > c)µ=24 =α= 0.05 , P (¯
Xc)µ=24 = Φ c24
0.9= 1 α= 0.95
c24
0.9= 1.645 , c = 25.56 .
TADE : TESTS D’HYPOTHÈSES 3
Conclusion : si ¯x25.56 , l’hypothèse n’est pas rejetée, si ¯x > 25.56,elle est rejetée.
La puissance du test est
η(µ) = P(¯
X > 25.56)µ= 1 P(¯
X25.56)µ
= 1 Φ25.56 µ
0.9= 1 Φ(26.94 1.05µ)
Cas (ii) :
P(¯
Xc)µ=24 = Φ c24
0.9=α= 0.05
c= 24 1.56 = 22.44
Conclusion : si ¯x22.44 , l’hypothèse n’est pas rejetée, si ¯x < 22.44,elle est rejetée.
La puissance du test est
η(µ) = P(¯
X22.44)µ= Φ 22.44 µ
0.9= Φ(23.65 1.05µ)
Cas (iii) : Vu que la loi normale est symétrique, nous choisissons c1= 24 ket
c2= 24 + k, et nous calculons ka partir de
P(24 k¯
X24 + k)µ=24 = Φ k
0.9Φk
0.9= 1 α= 0.95
k
0.9= 1.960 , k = 1.86
et donc
c1= 22.14 , c2= 25.86
Conclusion : si c1¯xc2,l’hypothèse n’est pas rejetée. La puissance du test est
η(µ) = P(¯
X < 22.14)µ+P(¯
X > 25.86)µ
= 1 + Φ 22.14 µ
0.9Φ25.86 µ
0.9
= 1 + Φ(23.34 1.05µ)Φ(27.26 1.05µ)
Tests de Signification
Nous comparons le modèle avec les données afin de fournir une mesure de proxi-
mité, appelée la signification, ou la valeur-p. Cette comparaison dépend de la défi-
nition d’une statistique, s, dont la distribution d’échantillonage est complètement
définie par le modèle qui contient l’hypothèse nulle. Chaque ensemble de données
possible est identifié avec une valeur de la statistique, de telle façon que des valeurs
croissantes de la statistique impliquent un accord décroissant entre le modèle et les
données.
Définition. Pour une valeur observée, s0,de la statistique s, la signification, ou la
valeur-pest la probabilité que sprenne une valeur supérieure ou égale à s0,
p0=PH0(ss0).
TADE : TESTS D’HYPOTHÈSES 4
Interprétation. Les consignes usuelles sont :
si p0>0.05,alors les données sont présumées d’être consistantes avec le modèle
proposé et l’hypothèse est considérée comme étant raisonnable ;
si 0.01 < p0<0.05,alors il y a des signes contre le modèle et on suppose
que le défaut possible dans le modèle est du à l’hypothèse expérimental qu’elle
contient ;
si p0<0.01,alors il existe des signes forts contre le modèle, et donc contre
l’hypothèse expérimentale qu’elle contient.
Tests pour des petits échantillons
Ci-dessus, nous avons supposé que les échantillons étaient de taille suffisamment
grande pour que l’application de l’approximation normale soit valable (n > 30 ).
Pour des échantillons de taille n < 30 , appelés petits échantillons, cette approxi-
mation est mauvaise. Afin de construire des intervalles de confiance et des tests
d’hypothèse pour ces échantillons, nous utilisons trois distributions importantes :
la distribution tde Student, la distribution chi-deux et la distribution F.
Afin de calculer la distribution d’échantillon pour la différence entre deux va-
riances (S2
1S2
2)on utilise la statistique S2
1/S2
2qui suit une loi F. Définissons la
statistique Fpar
F=b
S2
12
1
b
S2
22
2
=N1S2
1/(N11)σ2
1
N2S2
2/(N21)σ2
2
alors Fsuit une loi F(ν1, ν2)avec degrés de liberté ν1=N11et ν2=N2
1.Nous utilisons des niveaux 5% et 1% afin de déterminer si la variance S1est
significativement plus grande que S2.
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !