2015/2016
a2= sin2(t) + 2 sin(t)×cos(t) + cos2(t) = 1 + 2 sin(t) cos(t)sin(t) cos(t) = a2−1
2
a3= sin3(t)+3 sin2(t) cos(t)+3 sin(t) cos2(t)+cos3(t) = sin3(t) + cos3(t)+3 sin(t) cos(t) (sin(t) + cos(t))
sin3(t) + cos3(t) = a3−3aa2−1
2sin3(t) + cos3(t) = a3−a2
2
sin5(t)+cos5(t)a5sin(t) cos(t) sin3(t)+cos3(t)
sin5(t) + cos5(t) = a5−a4
4
n∈N∗(E) (z+i)2n+1 −(z−i)2n+1 = 0
i z 6=i(E)
z+i
z−i2n+1
= 1 z+i
z−i
z(E)⇐⇒ ∃k∈[[1,2n]]
z+i
z−i=e2ikπ
2n+1 ⇐⇒ ∃k∈[[1,2n]] 2zsin kπ
2n+ 1e
ikπ
2n+1 = 2 cos kπ
2n+ 1e
ikπ
2n+1
z(E)⇐⇒ ∃k∈[[1,2n]] z= cotan kπ
2n+ 1
2n
2z4−4z3+ (1 −4i)z2−(6 −8i)z−3+4i= 0
z
2z4−4z3+ (1 −4i)z2−(6 −8i)z−3+4i= 0
x
x⇐⇒ 2x4−4x3+ (1 −4i)x2−(6 −8i)x−3+4i= 0 ⇐⇒ 2x4−4x3+x2−6x−3+i−4x2+ 8x+ 4= 0
⇐⇒
2x4−4x3+x2−6x−3=0
−4x2+ 8x+ 4 = 0 ⇐⇒
2x2+ 3x2−2x−1= 0
x2−2x−1=0 ⇐⇒ x∈n1 + √2,1−√2o
1 + √2 1 −√2
z⇐⇒ 2x2+ 3 −4ix2−2x−1= 0
S=(1 + √2,1−√2,√2
2+i√2,−√2
2−i√2)
n∈Nω=e2iπ
n
n−1 + ω+ω2+··· +ωn−1= 0
n−1
X
k=0
cos 2kπ
n= 0
ωk−1
2= 4 sin2kπ
n= 2 −2 cos 2kπ
nn−1
X
k=0 ωk−1
2= 2n
p n ωp= 1
n−1
X
k=0
ωk p =np n ωp
n−n