(1.6)
x+h x −h
f(x+h) = f(x) + hf0(x) + h2
2f00 (x) + Oh3
f(x−h) = f(x)−hf0(x) + h2
2f00 (x) + Oh3
2hf0(x) = f(x+h)−f(x−h) + Oh3
O(h3)
h=O(h2),
f: Ω ⊂Rd→R∂f
∂xi
∂2f
∂xi∂xj
16i, j 6d
d= 2
∂2f
∂x2(x, y) = 1
h2(f(x+h, y)−2f(x, y) + f(x−h, y)) + Oh2
∂2f
∂y2(x, y) = 1
h2(f(x, y +h)−2f(x, y) + f(x, y −h)) + Oh2
∆f(x, y) = 1
h2(f(x+h, y)−4f(x, y) + f(x−h, y) + f(x, y +h) + f(x, y −h)) + Oh2
h
∆h=1
h2
1
1−4 1
1
Au =b
A
−u00 +cu0=f]0,1[
u(0) = 0
u(1) = 0
f, c c >0 [0,1] n+ 1
h=1
n+1
Ωh={ih, 06i6n+ 1}
íu0=un+1 = 0
íih
u00
i=1
h2(ui−1−2ui+ui+1) + Oh2