Table des matières
1 Introduction 4
2 Quelques rappels de calcul différentiel, analyse convexe et extremum 5
2.1 Rappel calcul différentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 QuelquesNotations........................... 5
2.1.2 Quelques rappels sur le calcul différentiel . . . . . . . . . . . . . . . 6
2.1.3 Rappel formules de Taylor . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Quelque rappels sur le matrices carrées réelles . . . . . . . . . . . . 11
2.2 Convexité .................................... 11
2.2.1 Fonctions convexes, strictement convexes, fortement convexes . . . . 11
2.2.2 Exemples des fonctions convexes, strictement convexes et fortement
convexes................................. 16
2.2.3 Fonctions coercives . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Conditions nécéssaires et suffisantes de minimum . . . . . . . . . . . . . . 17
2.4 Existence et unicité d’un point de minimum . . . . . . . . . . . . . . . . . 21
3 Optimisation sans contraintes 23
3.1 Méthodesderelaxation............................. 24
3.1.1 Description de la méthode . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Cas particulier des fonctions quadratiques . . . . . . . . . . . . . . 27
3.2 Méthodesdegradient.............................. 28
3.2.1 Méthodes de gradient à pas optimal . . . . . . . . . . . . . . . . . . 29
3.2.2 Autres méthodes du type gradient . . . . . . . . . . . . . . . . . . . 30
3.3 La méthode des gradients conjugués . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Le cas quadratique . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Cas d’une fonction Jquelconque ................... 38
4 Optimisation avec contraintes 39
4.1 Rappel sur les multiplicateurs de Lagrange . . . . . . . . . . . . . . . . . . 40
4.2 Optimisation sous contraintes d’inégalités . . . . . . . . . . . . . . . . . . . 41
4.2.1 Conditions d’optimalité de premier ordre : multiplicateurs de Karush-
Kuhn-Tucker .............................. 41
4.2.2 Théorie générale du point selle . . . . . . . . . . . . . . . . . . . . . 49
2