A= (ai,j )∈ Mn(C)
kAk= sup
1≤i≤n
n
X
j=1|ai,j |
k · k Mn(C)
∀A, B ∈ Mn(C),kABk≤kAkkBk
A= (ai,j )∈ Mn(C)
kAk= sup
1≤i≤n
n
X
j=1|ai,j |
k · k Mn(C)
λ A |λ| ≤ kAk
x= (x1, . . . , xn)∈Knp≥1
kxkp= n
X
i=1|xi|p!1/p
kxk∞= lim
p→+∞kxkp
f1, . . . , fn: [0 ; 1] →R
N: (x1, . . . , xn)7→ kx1f1+··· +xnfnk∞
Rn
N:R2→R
N(x1, x2) = sup
t∈[0;1]|x1+tx2|
R2
k·k∞
`1(N,K)u= (un)n∈N∈KN
`1(N,K) = nu∈KNX|un|<+∞o
`1(N,K)K
kuk1=
+∞
X
n=0|un|
IRL1(I, K)
f:I→K
L1(I, K) = f∈ C(I, K)ZI|f|<+∞
L1(I, K)K
kfk1=ZIf(t)dt
IRL2(I, K)
f:I→K
L2(I, K) = f∈ C(I, K)ZI|f|2<+∞