E, F G f ∈L(E, F )g∈L(F, G)
(gof) = (g)⇐⇒ ker g+ (f) = F
ker(gof) = ker(f)⇐⇒ (f)∩ker g={0}
Ef
−→ Fg
−→ G
(gof)⊂(g)
•(gof) = (g)
x∈F g(x)∈(g) = (gof)∃t∈E, g(x) = gof(t)
x=f(t)+(x−f(t)) f(t)∈(f)x−f(t)∈ker g
g(x−f(t)) = g(x)−gof(t) = 0
F⊂ker g+ (f) ker g(f)F
•ker g+ (f) = F
y∈(g)∃x∈F, y =g(x)
ker g+ (f) = F∃a∈ker g, ∃b∈(f), x =a+b∃c∈E, b =f(c)
y=g(x) = g(a+b) = g(a)
|{z}
0
+g(b) = g(f(c)) ∈(gof)
(g)⊂(gof)
ker(f)⊂ker(gof)
•ker(f) = ker(gof)
y∈(f)∩ker g:∃x∈E, y =f(x)g(y) = 0 g(f(x)) = 0 x∈ker(gof) = ker(f)
f(x) = 0 y=f(x) = 0
(f)∩ker g={0}
•(f)∩ker g={0}
x∈ker(gof)gof(x) = 0 f(x)∈(f)∩ker g={0}f(x) = 0 x∈ker f
ker(f)⊂ker(gof)
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
L(E, F )
E F G E
W={u∈L(E, F ), G ⊂ker u}
WL(E, F )
E, F G
ω E F
•ker(ω) = E G ⊂ker ω ω ∈G W
•u v ∈W λ ∈
u v E F G ⊂ker u G ⊂ker v
∀x∈G, u(x) = v(x) = 0 ∀x∈G, (u+λv)(x) = 0 G⊂ker(u+λv)
u+λv ∈W
WL(E, F )
n= dim(E), p = dim(F)m= dim(G)
G H E G ⊕H=E
•u∈L(E, F )
u|Gu|Hu G H
∀x∈E, ∃x1∈G, ∃x2∈H, x =x1+x2
u(x) = u(x1+x2) = u(x1) + u(x2) = u|G(x1) + u|H(x2)
u∈W⇐⇒ G⊂ker u⇐⇒ ∀x1∈G, u(x1) = 0 ⇐⇒ ∀x1∈G, u|G(x1) = 0 ⇐⇒ u|G=ω
•ΦL(E, F )L(G, F )u∈L(E, F )u|G
Φ : L(E, F )−→ L(G, F )
u7→ u|G
u∈W⇐⇒ u|G=ω⇐⇒ Φ(u) = ω W = ker Φ
dim(L(E, F )) = dim(ker Φ
|{z}
W
) + dim( Φ)
dim(W) = dim(L(E, F )) −dim( Φ)