Algebre lineaire - les classiques

f2
E n
fL(E)
(f2) = fdim(ker ff)
dim(ker f2)2 dim(ker f)
e
f f f e
f: (f)E
x7→ f(x)
(e
f) = f( (f)) = (f2) ker( e
f) = ker ff
f
dim( f) = dim( ( e
f)) + dim(ker( e
f))
(f) = (f2) + dim(ker ff)
ndim(ker f) = ndim(ker f2) + dim(ker ff)
dim(ker f2) = dim(ker f) + dim(ker ff)
dim(ker ff)dim(ker f) ker ffker f
dim(ker f2)2 dim(ker f)
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
E F
fL(E, F )G E
dim(f(G)) = dim(G)dim(ker fG)
e
f f G e
f:GE
x7→ f(x)
(e
f) = f(G) ker( e
f) = ker fG
f
dim(G) = dim( ( e
f)) + dim(ker( e
f))
dim(G) = dim(f(G)) + dim(ker fG)
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
E F f L(E, F )G F
f1(G)E
(f1(G)) = (G(f) + (ker f)
f(0E) = 0FG0Ef1(G)f1(G)
x, y f1(G),λ, f(x+λy) = f(x)
|{z}
G
+λ f(y)
|{z}
G
G x +λy f1(G)
f1(G)E
e
f f f1(G)f1(G)f
F
ker(f)f1(G) ker( e
f) = f1(G) ker(f) = ker(f)
y(e
f),xf1(G), y =e
f(x) = f(x)yG(f)
(e
f)G(f)
yG(f)yGxE, y =f(x)
y=f(x)G, x f1(G)y=f(x) = e
f(x)(e
f)
(e
f) = G(f)
e
f
(f1(G)) = (G(f) + (ker f)
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
p q E
p+q
poq+qop= 0
poq=qop= 0
p+q
(p)(q) = {0}ker p+ ker q=E
p+q
p q pop=p qoq=q
p+q(p+q)2=p+q
pop
|{z}
=p
+poq+qop+qoq
|{z}
=q
=p+q
poq+qop= 0
a)b)
c) =b)
b) =poq+qop= 0
=popoq+poqop= 0 p
=poq+poqop= 0
p, poqop+qopop= 0
=poqop+qop= 0
poqqop= 0 poq=qop= 0
b)c)
p+q
x(p)(q).tE, zE, x =p(t) = q(z)
p(x) = pop(t) = p(t) = x=poq(z) = 0 poq= 0
(p)(q) = {0}
• ∀xE, x =p(x)+(xp(x))
q(p(x)) = qop(x) = 0 qop= 0 p(x)ker q
p(xp(x)) = p(x)pop(x) = 0 p x p(x)ker p
Eker p+ ker q
(p+q)(p)+ (q)
(p+q)) = (p+q) = (p+q)p+q
= (p)+ (q)
= (p)+ (q)p q
(p)+ (q)) = (p))+ (q)) pq)
(p)(q) = {0}
(p)+ (q)) = (p))+ (q))
(p+q) = (p)+ (q)
ker pker qker(p+q)
xker(p+q)p(x) = q(x)
p(x)p q(x)q p(x)pq={0}p(x) = 0 q(x) = 0
xker pker q
ker(p+q) = ker pker q
p+q(p)+ (q) ker pker q
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
f n
(f) + (IdEf)n f E
xE, x =f(x)+(IdEf)(x)
E(f) + (IdEf)
dim (f) + (IdEf)
| {z }
=n
= dim( f) + dim( (IdEf))
| {z }
n par hypothese
dim (f)(IdEf)
| {z }
0
dim( f) + dim( (IdEf)) = n(f)(IdEf) = {0}
xE, f2(x)f(x) = ff(x)x= (IdEf)f(x)(f)(IdEf) = {0}
f2(x) = f(x)f
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
f f2
f n
(f) = (f2)ker(f)(f) = E
f2fker fker f2
ker(f)(f) = E
f f ˜
f f f
ker ˜
f=fker f={0}˜
f
xf2,tE, x =f2(t) = f(f(t)
|{z}
Im(f)
) = ˜
f(f(t)) ˜
f
˜
f f f2f f2(f) =
(f2)
(f) = (f2)
dim(ker f) = dim(ker f2)
ker fker f2ker f= ker f2
xker(f)(f)
tE, x =f(t)f(x) = 0 f2(t) = f(x) = 0
tker f2tker fker f= ker f2f(t) = 0 = x
ker(f)(f) = {0}ker(f)(f)
dim(ker(f)(f)) = dim(ker(f)) + dim( (f)) = dim E
ker(f)(f)Eker(f)(f) = E
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
f g E n
(f+g) = (f) + (g)fg={0}
ker f+ ker g=E
y(f+g),xE, y = (f+g)(x) = f(x)
|{z}
f
+g(x)
|{z}
g
(f+g)
|{z}
(1)
f+g
(f+g) = dim( (f+g))
|{z}
(10)
dim( f+g) = (f) + (g)dim( fg)
(f+g) (f) + (g)
dim( fg) = 0
(f+g) = (f) + (g)(f+g) = f+g
fg={0}
(f+g) = (f) + (g)
fg={0}
dim(ker f+ ker g) = dim(ker f) + dim(ker g)dim(ker fker g)
=nf+ngdim(ker fker g)
= 2n(f+g)dim(ker fker g)
ker fker g= ker(f+g)
ker fker gker(f+g)
xker(f+g)
(f+g)(x) = 0 f(x)
|{z}
f
=g(x)
|{z}
g
f(x) = g(x) = 0 fg={0}
xker fker g
dim(ker f+ ker g) = 2n(f+g)dim(ker(f+g)) = 2nn=n
f+g
ker f+ ker gE
ker f+ ker g=E
fg={0}ker f+ ker g=E
(f+g) = f+g
(f+g)f+g f +g(f+g)
zf+gx, y E z =f(x) + g(y)
ker f+ ker g=E a ker f b ker g x =a+b
cker f d ker g y =c+d
(f+g)(b+c) = f(b) + f(c)
|{z}
0
+g(b)
|{z}
0
+g(c)
z=f(x) + g(y) = f(a+b) + g(c+d) = f(a)
|{z}
0
+f(b) + g(c) + g(d)
|{z}
0
=f(b) + g(c)
z= (f+g)(b+c)(f+g)
(f+g) = f+g
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
E, F G f L(E, F )gL(F, G)
Ef
Fg
G
gof
(gof) = (f)(ker g f)
(gof) = (g) + (ker g+f)F
(gof) = (f) (gof) = (g)
eg g (f) (f)g
G
x7→ g(x)
(gof) = g( (f)) = (eg)
ker(eg) = (f)ker g
egdim( f) = dim( eg) + dim(ker eg)
f= (gof) + dim( (f)ker g)
( (f) + ker(g)) = ( f) + (ker g)(fker g)
=f+ (F)g(fker g)
(gof) = fdim( (f)ker g)
=f+ ( (f) + ker(g)) f(F) + g
(gof) = g(f+ ker g)(F)
f= (gof) + dim( fker g)
(gof) = ffker g={0}
(gof) = g+ ( f+ ker g)(F)
(gof) = g(f+ ker g) = (F)
f+ ker g=F f + ker gF
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
E, F G f L(E, F )gL(F, G)
(gof) = (g)ker g+ (f) = F
ker(gof) = ker(f)(f)ker g={0}
Ef
Fg
G
(gof)(g)
(gof) = (g)
xF g(x)(g) = (gof)tE, g(x) = gof(t)
x=f(t)+(xf(t)) f(t)(f)xf(t)ker g
g(xf(t)) = g(x)gof(t) = 0
Fker g+ (f) ker g(f)F
ker g+ (f) = F
y(g)xF, y =g(x)
ker g+ (f) = Faker g, b(f), x =a+bcE, b =f(c)
y=g(x) = g(a+b) = g(a)
|{z}
0
+g(b) = g(f(c)) (gof)
(g)(gof)
ker(f)ker(gof)
ker(f) = ker(gof)
y(f)ker g:xE, y =f(x)g(y) = 0 g(f(x)) = 0 xker(gof) = ker(f)
f(x) = 0 y=f(x) = 0
(f)ker g={0}
(f)ker g={0}
xker(gof)gof(x) = 0 f(x)(f)ker g={0}f(x) = 0 xker f
ker(f)ker(gof)
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
L(E, F )
E F G E
W={uL(E, F ), G ker u}
WL(E, F )
E, F G
ω E F
ker(ω) = E G ker ω ω G W
u v W λ
u v E F G ker u G ker v
xG, u(x) = v(x) = 0 xG, (u+λv)(x) = 0 Gker(u+λv)
u+λv W
WL(E, F )
n= dim(E), p = dim(F)m= dim(G)
G H E G H=E
uL(E, F )
u|Gu|Hu G H
xE, x1G, x2H, x =x1+x2
u(x) = u(x1+x2) = u(x1) + u(x2) = u|G(x1) + u|H(x2)
uWGker u⇒ ∀x1G, u(x1) = 0 ⇒ ∀x1G, u|G(x1) = 0 u|G=ω
ΦL(E, F )L(G, F )uL(E, F )u|G
Φ : L(E, F )L(G, F )
u7→ u|G
uWu|G=ωΦ(u) = ω W = ker Φ
dim(L(E, F )) = dim(ker Φ
|{z}
W
) + dim( Φ)
dim(W) = dim(L(E, F )) dim( Φ)
1 / 21 100%

Algebre lineaire - les classiques

Study collections
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !