(X, Y )
L(Y|X) = a∗X+b∗
E(aX +b) = E(Y) cov(Y−(aX +b), X) = 0 (a, b)=(a∗, b∗)
(X1, Y1), ..., (Xn, Yn)
(X, Y )
y=anx+bnan
bn
anbn
(Xi, Yi)i= 1, ..., n n ≥2 (X, Y )
Y=a∗X+b∗+ X
Y=
Y1
Yn
∈RnW=
X11
Xn1
∈Rn×2.
∀i= 1, ..., n Yi=a∗Xi+b∗+iθ∗= (a∗, b∗)>
X fXW>W
ˆ
θ
θ7→ kY−Wθk2= (Y−Wθ)>(Y−Wθ), θ ∈R2.
ˆ
θ1ˆ
θ2Xn, Y n,ˆσ(X, Y )
var(Y|X) = E(Y2|X)−E(Y|X)2.
var(Y) = var E(Y|X)+Evar(Y|X)
X
Y=g(X) +
g
E() = 0 E(Y|X) = g(X)
E(Y|X)E() = m6= 0
(X, Y )
fXY (x, y) = p1−ρ2
2πexp −1
2x2+y2+ 2ρxy, x, y ∈R,
ρ∈]−1,1[
fXY (u, v) = p1−ρ2x, y +ρx
E|X|k<∞k∈N E(X) var(X)
X Y
φ∗(x) = E(Y|X=x)