Théorie élémentaire des Probabilités – Rappels d'analyse combinatoire
THEORIE ELEMENTAIRE DES PROBABILITES
Définitions
Une épreuve ou une expérience, c'est la réalisation de certaines conditions à l'issue
desquelles un événement E peut se produire ou ne pas se produire.
Exemple : Epreuve : Evénement :
Lancer d'un Ö sortie d'un 6
Crue d'une rivière Ö présence d'eau sur la route qui borde la rivière
L'épreuve est aléatoire dans la mesure où son résultat ne peut être prévu avec certitude.
Par convention, l'événement E auquel on s'intéresse est l'événement favorable.
La probabilité c'est le nombre de cas favorables sur le nombre de cas possibles
Si on a n épreuves et k événements favorables E, la fréquence relative de E a pour valeur
k/n =n'E qui est une estimation de la probabilité p qu'à un événement E de se produire à
l'issue d'une épreuve.
La probabilité est la limite vers laquelle tend la fréquence relative n'E
quand n tend vers l'infini
8 Exemple du jet de pièces de monnaie : la fréquence relative liée à l'apparition du coté "face" de
la pièce tend vers 0,5 mais sans garantir que cette valeur soit strictement exacte (même après
10 000 jets) : expérience de Kerrich (1946).
Propriétés fondamentales des probabilités
Si on considère un événement alors est la probabilité d'observer E1 à l'issue d'une
épreuve. Comme pour les fréquences relatives on a
1
E)E(P 1
1)E(P0 1
Si = 1 l'événement est dit
)E(P 1certain
Si = 0 l'événement est dit
)E(P 1impossible
Probabilité d'observer l'un ou l'autre de plusieurs événements (propriété additivité) : soit
une épreuve à laquelle on associe deux événements et :
1
E2
E
Si les deux événements ne peuvent se produire simultanément on a affaire à des
événements exclusifs ou incompatibles et P(E1 ou E2) = P(E1) +P(E2)
1
Théorie élémentaire des Probabilités – Rappels d'analyse combinatoire
Si les deux événements peuvent se produire en même temps ou ne sont pas
nécessairement exclusifs on a P(E1 ou E2) = P(E1) + P(E2) – P(E1 et E2)
D'où d'une manière générale P(E1 ou E2)
P(E1) + P(E2)
Si on a m événements (E1, E2, …, Em) mutuellement exclusifs, on trouve par
récurrence que P(E1 ou E2 ou … ou Em) = P(E1) + P(E2) + … + P(Em)
Si m événements sont mutuellement exclusifs et si l'un d'entre eux doit
nécessairement se réaliser, les événements sont dits complémentaires ou
complètement exclusifs et on a P(E1 ou E2 ou … ou Em) = P(E1) + … + P(Em) = 1
On peut montrer qu'avec trois événements non nécessairement exclusifs on aboutit à :
P(E1 ou E2 ou E3) = P(E1) + P(E2) + P(E3) – P(E1 et E2) – P(E1 et E3) – P(E2 et E3)
+ P(E1 et E2 et E3)
Probabilité et théorie des ensembles
On peut également raisonner en terme d'ensembles. Supposons que pour une expérience (ou
épreuve) aléatoire donnée, Ω constitue l'ensemble des résultats possibles. Tout événement
aléatoire favorable E1 correspond alors à un sous-ensemble de Ω.
On associe à E1 un nombre P(E1) appelé probabilité, qui représente le rapport de l'aire de E1
sur l'aire de Ω. On a alors :
1)E(P0 1
pour tout E1 Ω
P(Ω) = 1
P() = 0 avec = ensemble vide
E1
Ω
E2
E1
Ω
E2
Événements exclusifs :
P(E1 ou E2) = P(E1 E2) = P(E1) + P(E2)
P(E1 et E2) = P(E1 E2) = 0
Evénements compatibles
P(E1 E2) = P(E1) + P(E2) - P(E1 E2)
D'où
P(E1 E2) = P(E1) + P(E2) - P(E1 E2)
2
Théorie élémentaire des Probabilités – Rappels d'analyse combinatoire
La probabilité conditionnelle
Soit une épreuve aléatoire pouvant conduire à la réalisation de deux événements E1 et E2
non nécessairement exclusifs.
Lorsque P(E2) est non nulle, on définit la probabilité conditionnelle ou liée de E1 sous la
condition E2 par : P(E1|E2) = P(E1 et E2) / P(E2)
Et de même si P(E1) est non nulle : P(E2|E1) = P(E1 et E2) / P(E1)
Cette définition conduit à la propriété de multiplicativité ou de la probabilité composée
qui reste valable même si P(E1) et P(E2) sont nuls :
P(E1 et E2) = P(E1) P(E2|E1) = P(E2) P(E1|E2)
Pour m événements on démontre par récurrence que :
P(E1 et … et Em) = P(E1) P(E2|E1) … P(Em|E1 … Em-1)
L'indépendance stochastique
L'événement E1 est dit stochastiquement indépendant de E2 si la probabilité de voir se
réaliser E1 ne dépend pas de la réalisation ou de la non-réalisation de E2, c'est à dire :
P(E1|E2) = P(E1|E2) = P(E1) où E est la non-réalisation de E
D'où
P(E1 et E2) = P(E1) P(E2)
La notion d'indépendance stochastique s'applique également à plus de deux événements
aléatoires. On dit que m événements sont stochastiquement indépendants si pour tout
ensemble formé de k de ces événements :
P(E1 et … et Ek) = P(E1) … P(Ek)
Il faut cependant noter que l'indépendance stochastique de m événements deux à deux
n'entraîne pas nécessairement l'indépendance stochastique de l'ensemble des m événements.
8 Exemple : jet simultané de deux dés : si E1 = chiffre impair sur un dé ; E2 = chiffre impair sur
l'autre dé et E3 = la somme des deux est impaire alors ces événements sont indépendants
deux à deux, mais : P(E1 et E2 et E3) = 0 et non pas P(E1) P(E2) P(E3) = (1/2) 3
3
Théorie élémentaire des Probabilités – Rappels d'analyse combinatoire
Les tirages successifs sans remise et les tirages simultanés de plusieurs individus dans une
population finie ne sont pas des expériences aléatoires indépendantes.
Quand on fait des tirages successifs dans une population finie, il faut remettre les individus
après chaque tirage pour que les tirages soient indépendants.
Réalisation d'au moins un événement parmi m événements indépendants et non
complémentaires :
Soit k événements indépendants, alors les événements contraires le sont aussi.
P(E1 et E2 et … et Em) = P(E1) P(E2) … P(Em) = [1- P(E1)] [1- P(E2)] … [1- P(Em)]
P(E1 ou E2 ou … ou Em) = 1 - [1- P(E1)] [1- P(E2)] … [1- P(Em)]
Si les m événements ont la même probabilité p, on a P(E1 ou E2 ou … ou Em) = 1 – (1-p)m
8 Application : calcul de la probabilité d'avoir au moins une fois un débit décennale au cours
des n prochaines années :
Le débit décennale est définit par une probabilité P(E) = 0,1 d'où P(E) = 0,9
Si on fait l'hypothèse de l'indépendance des années successives, alors :
P(Eannée 1 ou Eannée 2 ou … ou Eannée n) = 1 – (1-0,1)n
Si n = 10 ans, on a 65% de chance de voir un débit décennal sur cette période.
Formule de la probabilité complète – Théorème de Bayes
Soit E1 , E2 , … , Em , m événements constituant un système complet d'événements. A chaque
réalisation de Ej est associé un autre événement A avec une certaine probabilité P(A|Ej)
appelée probabilité à priori.
La probabilité de voir apparaître A, c'est à dire la probabilité complète s'écrit :
P(A) = Σ P(A et Ej) = Σ P(Ej) P(A| Ej)
Théorème de Bayes : on vient d'observer A et on cherche P(Ej |A) appelée probabilité à
postériori.
Comme on sait que P(A et Ej) = P(A) P(Ej |A) = P(Ej) P(A| Ej) et on en déduit
P(Ej |A) = P(Ej) P(A| Ej) / P(A) = P(Ej) P(A| Ej) / Σ P(Ej) P(A| Ej)
4
Théorie élémentaire des Probabilités – Rappels d'analyse combinatoire
8 Application : Une première urne contient une boule blanche et une boule noire. Une seconde
urne contient deux boules blanches et une boule noire. On tire au hasard une boule de la
première urne et on la met dans la seconde. On tire ensuite au hasard une boule de la
seconde urne. Cette boule est noire. Quelle est alors la probabilité que la première boule tirée
ait été blanche ?
Les probabilités connues à priori sont :
E1 : boule blanche P(B1) = ½ A : boule noire P(N|B1) = ¼
E2 : boule noire P(N1) = ½ P(N|N1) = ½
La probabilité totale de N est P(N) = P(N et B1) + P(N et N1) puisque N dépend de B1 et N1.
P(N) = P(B1) P(N|B1) + P(N1) P(N|N1) = ½ × ¼ + ½ × ½ = 3/8
La probabilité à postériori est
P(B1|N) = P(B1) P(N|B1) / P(N) = ½ × ¼ /(3/8) = 1/3
Remarque : on commet de graves erreurs quand les probabilités à priori sont mal connues.
Entropie d'un système complet de k événements :
=
=
k
1j j2j )E(Plog)E(PH
Elle mesure l'incertitude associée à la réalisation d'un événement (le désordre d'une
situation). L'entropie est maximale si les événements sont équiprobables : tout peut arriver !
5
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !