1
Mathématiques Section :
La trigonométrie
(1ère partie)
Aux origines de la trigonométrie
C.F.A du bâtiment Ermont
2
La trigonométrie veut dire littéralement : « l’art de la mesure dans le triangle ».
Plus précisément, c’est une partie des mathématiques qui permet dans un triangle rectangle
de relier les valeurs des côtés et les valeurs des angles. En ce sens, c’est la leçon
complémentaire au théorème de Pythagore.
Pythagore :
Avec deux longueurs, je trouve la troisième longueur
Trigonométrie :
Avec deux longueurs, je trouve les angles
Avec une longueur et un angle, je retrouve les deux autres longueurs.
Historiquement, la trigonométrie est une théorie
développée pour l’astronomie et la navigation, dés
l’antiquité, puis améliorée dans le but de réaliser
des cartes précises. La première carte de la France
ainsi achevée date du 18e siècle.
Enfin, cette idée est toujours d’actualité, puisque désormais, c’est pour la modélisation 3D
que cette théorie prend tout son sens, telle quelle ou améliorée.
3
Le vocabulaire du triangle en trigonométrie
En trigonométrie, nous avons besoin, pour chaque triangle rectangle étudié, de faire le point
sur les côtés afin de leur donner un nom.
Pour cela, nous avons une méthode un peu nouvelle : nous allons choisir un des deux angles
non-droit du triangle, et donner des noms aux côtés en fonction de cet angle de référence.
Regardons maintenant sur un exemple :
On choisit donc un angle de référence : notons-le a.
Le plus grand des 3 côtés s’appellera l’hypoténuse. Il est toujours en face de l’angle droit.
Le côté qui est en face de l’angle de référence a, à l’opposé, s’appellera le côté opposé.
Le côté qui reste s’appellera le côté adjacent. Il touche l’angle de référence a, comme
l’hypoténuse.
Attention : hormis pour l’hypoténuse, si vous changez votre angle de départ,
vous changez aussi les noms des côtés : l’opposé et l’adjacents échangent de
rôle.
Exercice :
Pour les triangles rectangles ci-dessous, indiquez les noms des trois côtés.
Côté opposé à a
Hypoténuse
Côté adjacent à a
a
4
Rapports trigonométriques dans le triangle rectangle
Ce chapitre au nom un peu obscur va simplement nous présenter 3 formules qui donnent
les relations entre les côtés et les angles d’un triangle rectangle.
Ces rapports sont le sinus (sin), le cosinus (cos) et la tangente (tan) de l’angle a :
Remarque : comme ces formules trigonométriques sont des rapports (= divisions), on les appelle parfois
« rapports trigonométriques ». Ces formules ne sont pas, cette année, à connaître par cœur : les sujets
proposent toujours un formulaire où elles apparaissent. En revanche, leur présentation peut varier, et il faut
savoir les reconnaître dans tous les cas.
Exercice :
Complétez les 6 formules suivantes :
sin A
=
cos A
=
tan A
=
sin B
=
cos B
=
tan B
=
C
B
C
5
Choisir la bonne formule en fonction du problème posé
En trigonométrie, nous rencontrons deux problèmes-types, inverses l’un de l’autre.
Problème-type n°1 : je connais 2 côtés, je cherche un angle.
Problème-type n°2 : je connais 1 côté et 1 angle, je cherche un deuxième côté.
Dans les deux cas, il y a donc une relation à trouver entre 1 angle et 2 côtés.
C’est là qu’interviennent les formules de trigonométrie : il va falloir choisir
laquelle utiliser parmi les 3 possibilités (sinus, cosinus, tangente).
Heureusement, il y a une méthode simple qui permet de la trouver
systématiquement …
Méthode :
1) D’abord, je fais le point : dans ce que je connais et ce que je cherche, il y a 1 angle et
2 côtés : lesquels sur ma figure ?
2) Ensuite, pour cet angle, quels sont les noms des 2 côtés concernés : adjacents,
opposés, hypoténuse ?
3) Enfin, quand vous connaissez les 2 noms des côtés, une seule formule permet de les
trouver ensemble.
Exemple 1 :
AB = 3 cm et BC = 4 cm
Quelle formule choisir pour calculer l’angle C
?
Réponse :
1) Je repère où se trouvent AB, BC et l’angle C
2) Pour l’angle C
, les côtés AB et BC sont les
côtés opposé et adjacent.
3) Je choisis donc la formule de la tangente : tan C
= ôé é
ôé 
Exemple 2 :
AB = 3 cm et l’angle C
= 30 °
Quelle formule choisir pour calculer le côté AC ?
Réponse :
1) Je repère où se trouvent AB, AC et l’angle C
2) Pour l’angle C
, les côtés AB et AC sont le côté opposé et l’hypoténuse.
Je choisis donc la formule de la tangente : sin C
= ôé é
é
A
B
C
1 / 8 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !