•(a, b, c)∈R3a6= 0 IRg:I→C
ay00 +by0+cy =g(x) (E)
•
ay00 +by0+cy = 0 (E0)
(E)
•(E)I ϕ :I→CI
∀x∈I, aϕ00(x) + bϕ0(x) + cϕ(x) = g(x).
S S0(E)E0
y:R→Cx7→ erx r∈Cy0=
rerx y00 =r2erx ay00 +by0+cy = (ar2+br+c)erx y∈ S0⇐⇒ ∀x∈R, ar2erx +brerx +cerx = 0
⇐⇒ (ar2+br +c)erx = 0 ⇐⇒ ar2+br +c= 0.
ar2+br +c=0r1r2
•(α, β)∈C2y:x7→ αer2x+βer1x(E0)
ay00 +by0+c=α(ar2
1+br1+c)er1x+β(ar2
2+br2+c)er2x= 0.
•y(E0)y(x) = z(x)er1x
y0(x) = (z0(x) + r1z(x))er1x;y00(x) = (z00 (x)+2r1z0(x) + r2
1z(x))er1x;
y∈ S0⇐⇒ ∀x∈R, ay00(x) + by0(x) + cy(x) = 0
⇐⇒ ∀x∈R, z0(x)(b+ 2r1a) + az00 (x) = 0
⇐⇒ ∃λ∈C∀x∈R, z0(x) = λe−b+2ar1
ax
⇐⇒ ∃(λ, µ)∈C2∀x∈R, z(x) = −λa
b+ 2ar1
e−b+2ar1
ax+µ
⇐⇒ ∃(α, β)∈C2∀x∈R, z(x) = αe−b+2ar1
ax+β
⇐⇒ ∃(α, β)∈C2∀x∈R, y(x) = αe−(b
a+r1)x+βer1x
⇐⇒ ∃(α, β)∈C2∀x∈R, y(x) = αer2x+βer1x
ar2+br +c=0r
y∈ S0⇐⇒ ∀x∈R, ay00(x) + by0(x) + cy(x) = 0
⇐⇒ ∀x∈R, az00 (x) = 0 ( b+ 2ar = 0)
⇐⇒ ∃(α, β)∈C2∀x∈R, z(x) = αx +β
⇐⇒ ∃(α, β)∈C2∀x∈R, y(x) = (αx +β)erx