¨
§
¥
¦
y0+a(t)y=b(t)
a b I R
ϕ:IRϕ
ϕ0(t) + a(t)ϕ(t) = b(t).
y0+a(t)y= 0 E0
ϕ:IR(E0)tI
ϕ0(t) + a(t)ϕ(t) = 0
a I A a I
ϕ0(t) + a(t)ϕ(t) = 0 ¡ϕ0(t) + a(t)ϕ(t)¢eA(t)= 0 ³ϕ(t)eA(t)´0
= 0.
I ϕ(t)eA(t)λR
tI, ϕ(t) = λeA(t)
s y0+a(t)y=b(t)
ts(t) + λeA(t)λR
ts(t) + λeA(t)(E)
ϕ(E) (ϕs)0+a(t)(ϕs) = b(t)
(ϕs) (E0)λ
ϕ(t)s(t) = λeA(t)ϕ(t) = s(t) + λeA(t).
iJ1, nK
y0+a(x)y=gi(x) (Ei)
yi(Ei)
n
X
i=1
yiy0+b(x)y=
n
X
i=1
gi(x) (E)
tλ(t)eA(t)
λ0(t)eA(t)=b(t)λ0(t) = eA(t)b(t)
λ t eA(t)b(t)I b I
a
b(t) = P(t)emt P m 6=a
b(t) = Q(t)emt Q P
b(t) = P(t)emt P m =a
b(t) = tQ(t)emt Q P
b(t) = λcos(ωt) + µsin(ωt)αcos(ωt) +
βsin(ωt)
i)y02y= 2t2;ii)y03y=et;iii)y0y=et;iv)½y0+y= cos t
y(0) = 0 .
y02y= 0 tλe2t
yp2yp(t) = a+bt +ct2
y0
p2yp=t2b+ 2ct = 2a+ 2bt + 2ct2+t22a+b+ (2b+ 2c)t2ct2= 2t2
2a+b= 0
2b+c= 0
2c= 2
a=1/4, b =1/2, c =1yp=1/41/2tt2
y(t) = λe2t1/4t/2t2, λ R
y03y= 0 tλe3t
ypyp(t) = µety0
p= 3yp+et
µet= 3µet+et(2µ+ 1)et= 0 µ=1/2yp=1
2et
y(t) = λe3t1
2et, λ R
y0y= 0 tλet
ypyp(t) = µtety0
p=yp+et
µet+µtet=µtet+etµet=µetµ= 1 yp=tet
y(t) = λet+tety(0) = 1 λ= 1 y(t) = (1 + t)et
y0+y= 0
tλetypyp(t) = acos t+bsin t
y0
p+yp= cos tasin t+bcos t+acos t+bsin t= cos t(a+b) cos t+(a+b) sin t= cos t
½a+b= 1
a+b= 0
a=b= 1/2yp=1
2(cos t+ sin t)y(t) = λet+1
2(cos t+ sin t), λ Ry(0) = 0
λ+1
2= 0 λ=1
2y(t) = 1
2(et+ cos t+ sin t)
(a, b, c)R3a6= 0 IRg:IC
ay00 +by0+cy =g(x) (E)
ay00 +by0+cy = 0 (E0)
(E)
(E)I ϕ :ICI
xI, aϕ00(x) + 0(x) + (x) = g(x).
S S0(E)E0
y:RCx7→ erx rCy0=
rerx y00 =r2erx ay00 +by0+cy = (ar2+br+c)erx y∈ S0⇒ ∀xR, ar2erx +brerx +cerx = 0
(ar2+br +c)erx = 0 ar2+br +c= 0.
ar2+br +c=0r1r2
(α, β)C2y:x7→ αer2x+βer1x(E0)
ay00 +by0+c=α(ar2
1+br1+c)er1x+β(ar2
2+br2+c)er2x= 0.
y(E0)y(x) = z(x)er1x
y0(x) = (z0(x) + r1z(x))er1x;y00(x) = (z00 (x)+2r1z0(x) + r2
1z(x))er1x;
y∈ S0⇒ ∀xR, ay00(x) + by0(x) + cy(x) = 0
⇒ ∀xR, z0(x)(b+ 2r1a) + az00 (x) = 0
⇒ ∃λCxR, z0(x) = λeb+2ar1
ax
⇒ ∃(λ, µ)C2xR, z(x) = λa
b+ 2ar1
eb+2ar1
ax+µ
⇒ ∃(α, β)C2xR, z(x) = αeb+2ar1
ax+β
⇒ ∃(α, β)C2xR, y(x) = αe(b
a+r1)x+βer1x
⇒ ∃(α, β)C2xR, y(x) = αer2x+βer1x
ar2+br +c=0r
y∈ S0⇒ ∀xR, ay00(x) + by0(x) + cy(x) = 0
⇒ ∀xR, az00 (x) = 0 ( b+ 2ar = 0)
⇒ ∃(α, β)C2xR, z(x) = αx +β
⇒ ∃(α, β)C2xR, y(x) = (αx +β)erx
ar2+br +c=0r1r2
S0={x7→ αer2x+βer1x,(α, β)R2}.
ar2+br +c=0r
S0={x7→ (αx +β)erx,(α, β)R2}.
ar2+br+c= 0 r1=a+ib
r2=aib
y ay00 +by0+cy = 0
z ay00 +by0+cy = 0 y= Re(z)
E0
E0
y∈ S0⇒ ∃(α, β)C2xR, y(x) = αer2x+βer1x= eax(αeibx +βeibx).
y
yE0⇒ ∃(λ, µ)R2xR, y(x) = eax(λcos(bx) + µsin(bx)).
(a, b, c)R3a6= 0 IR
ay00 +by0+cy = 0 (E0)
ar2+br +c= 0
r1r2
E0
S0={x7→ αer2x+βer1x,(α, β)R2}.
r
E0
S0={x7→ (αx +β)erx,(α, β)R2}.
r1=a+ib
r2=aib E0
S0={x7→ eax(αcos(bx) + βsin(bx)),(α, β)R2}.
Ry00 + 6y0+ 25y= 0
r2+ 6r+ 25 = 0 0=16 <0r1=3 + 4i r2=34i
S0={ϕ:RR, ϕ(x) = e3x(λcos 4x+µsin 4x),(λ, µ)R}.
Ry00 + 2y0+y= 0
r2+ 2r+ 1 = 0 r=1
S0={ϕ:RR, ϕ(x) = (λx +µ)ex,(λ, µ)R}.
Ry00 3y0+ 2y= 0
S S0
ay00 +by0+cy =g(x) (E)
(E)
ay00 +by0+cy = 0 (E0)
iJ1, nK
y00 +ay0+by =gi(x) (Ei)
yi(Ei)
n
X
i=1
yiy00 +ay0+by =
n
X
i=1
gi(x) (E)
(E) (Ei)
P(x)emx
y00 +ay0+by =P(x)emx P n
m
y(x) = Q(x)emx Q
P m
y00 +ay0+by =P(x)emx
x7→ tkQ(x)emx Q P
k= 0 m
k= 1 m
k= 2 m
y(x) = Q(x)emx y0(x)=(Q0(x) + mQ(x))emx y00(x) = (Q00 (x) +
2mQ0(x)+m2Q(x))emx y(E)Q00 + (2m+a)Q0+(m2+am+b)Q=
P(x)Q
Ry00 + 2y0+y=x2(exex)
(E0)y00 + 2y0+y= 0
r2+ 2r+ 1 = 0 r=1 (E0)
S0={x7→ (λx +µ)ex,(λ, µ)R2}
(E)
(E1)y00 + 2y0+y=x2ex
(E2)y00 + 2y0+y=x2ex
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !