
f∶(x, y)x2y(x+y−4)∆={(x, y)∈R2, x 0, y 0, x +y6}
∆
f∆
(t, u)∈R2M(t, u)=(sin tcos u, cos tcos u, sin u)
S∶x2+y2+z2=1
S
S A =(1,0,1)
P∶x−y+z=3S∶x2+y2+z2=4S P
(x, y)∈R2∖{(0,0)} f(x, y)=xy
x2+y2f(0,0)=0
fR2
fR2
fC1R2
∂f
∂x −y
2
∂f
∂y =0(x, y)=(u, ve−u/2)
a∈R
Rn[X]f
f(P)(X)=(X−a)P′(X)+P(X)−P(a).
f g E
dim( (f)∩(g))=(f)−(g○f)
KA B Mn(K)
dim( (AB)) dim( (A))+dim( (B))
R3[X]H={P∈R3[X], P (1)=0}
X H