Le triangle
Le triangle est une forme géométrique composée de trois angles et trois côtés.
Les valeurs des angles et des côtés peuvent varier sur certains triangles.
Les angles sont aussi nommés « sommets » du triangle.
On défini la longueur d'un côté en mesurant la distance entre deux sommets.
Par exemple on note : AB = 4 cm BC = 5,3 cm AC= 6,5 cm
Le sommet est définit par une lettre.
La valeur de l'angle se calcule entre les deux côtés de l'angle. Sa valeur est
exprimée en degré. Elle se calcule avec un instrument appelé « Rapporteur ».
Dans la catégorie des triangles, on rencontre différentes formes dotées de différents
aspects qui portent différents noms.
Cependant il est important de savoir que malgré ces différences, trois règles
s'appliquent à chacun d'eux :
La somme des angles représente toujours un total de 180°.
Le périmètre est toujours l'addition des trois côtés.
La surface se calcule toujours avec une seule formule.
Base x Hauteur
2
A
B
C
A
90°
Le triangle isocèle
Le terme isocèle veut dire qu’il a 2 côtés identiques
Les particularités du triangle isocèle :
Il est reconnaissable par le fait qu’il possède 2 angles de même valeur
Il est aussi doté de 2 cotés identiques
Il possède un seul axe de symétrie.
L'addition des trois angles représentent un total de 180°
Deux des trois angles ont la même valeur.
Quelles sont les mesures que nous pouvons calculer sur un triangle isocèle.
Le coté
Longueur calculée entre deux angles ou deux sommets.
Le périmètre
La longueur du périmètre est simplement l’addition des trois cotés.
La surface
une seule formule pour le calcul de la surface
Base x Hauteur
2
Axe de symétrie
Comment doit on faire pour dessiner un triangle isocèle ?
Voici un énoncé qui peut faire partie d’un test d’aptitude pour une entrée en
apprentissage.
Dessine un triangle isocèle selon ces dimensions.
Construction : BC = 4 cm AB = AC = 7cm
Première opération
Il faut essayer de comprendre l’énoncé
On nous dit que BC = 4 cm
Donc il faut placer un segment qui mesure 4 cm qui a des extrémités nommées par
les points B et C
En consultant la suite de l’énoncé, on nous dit que :
AB = AC = 7cm
AB est égale à AC et ces deux segments mesurent 7 cm.
Pour réaliser un triangle isocèle, je prends un compas que j’ouvre à 7cm et je pose la
pointe du compas sur le point B et je trace un arc de cercle puis je place le compas
sur le point de C et je croise l’arc de cercle avec celui du point B.
Ensuite il reste juste à rejoindre les points B et C avec le point de jonction des arcs
de cercles définit par la lettre A
B
C
B
C
B
C
A
B
C
Le triangle équilatéral
Le terme équilatéral veut dire « des côtés de mêmes longueurs ».
Les particularités du triangle équilatéral :
Les 3 angles sont de même valeur et représentent toujours 60°
Les 3 cotés sont identiques dans leur longueur
Le triangle équilatéral possède 3 axes de symétrie
Quelles sont les mesures que nous pouvons calculer sur un triangle équilatéral.
Le coté
Longueur calculée entre deux angles ou deux sommets.
Le périmètre
La longueur du périmètre peut être caculée de deux manières
l’addition des trois cotés
la valeur d'un côté multipliée par 3.
La surface
une seule formule pour le calcul de la surface
Base x Hauteur
2
A
B
A
BA
B
Comment peut-on dessiner un triangle équilatéral ?
Pour réaliser un tel triangle, nous devons reprendre les caractéristiques spécifiques
de ce triangle.
3 angles égaux de 60°
3 cotés de même longueur
Voici un énoncé qui peut faire partie d’un test d’aptitude pour une entrée en
apprentissage.
Dessine un triangle selon ces dimensions AB = AC = BC = 6 cm
Que faut il lire quand un tel énoncé nous est proposé ?
Le segment AB est égal au segment AC qui lui-même est égal au segment BC.
L’ensemble des segments mesure chacun une mesure identique qui est de 6 cm
Je commence par poser un premier segment et je définis le point A
Ensuite je prends un compas que j’ouvre à la dimension demandée.
Sur cet exemple je l’ouvre avec un écartement de 6 cm et je trace un arc de cercle
en piquant le compas sur le point A. De cette manière le point B est défini.
Ensuite, je pose le compas sur ce point B et je trace un deuxième arc de cercle qui
coupe le premier. Ainsi je définis le point C. et je rejoint tout les points
La plus grande difficulté est de faire attention à ne pas toucher le réglage de
l’écartement pendant toutes ces opérations de construction.
A
6 cm
CC
1 / 8 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !