f
f(x, y) = (x2y2ln(x2+y2) (x, y)6= (0,0)
0
f(x, y) = ((x2+y2) sin 1
x2+y2(x, y)6= (0,0)
0
f:R2R
f(x, y) = (sin(xy)
|x|+|y|(x, y)6= (0,0)
0
f
fC1
f(x, y) = xy x2y2
x2+y2
x, y
fR2
C1C2
f:R2R
f(x, y) = (xy3
x2+y2(x, y)6= (0,0)
0
fC1R2
2f
x∂y (0,0) 2f
yx (0,0)
f:R2− {(0,0)} → R
f(x, y)=(x2y2) ln(x2+y2)
f(0,0)
fC1R2− {(0,0)}
f
x (x, y) = f
y (y, x)
fC1R2
f:RRC1F:R2\ {(0,0)} → R
F(x, y) = f(x2+y2)f(0)
x2+y2
lim(x,y)(0,0) F(x, y)F(0,0)
fC2
F(0,0)
FC1
ϕ(x, y) = cos xcos y
xyx6=y
ϕR2ϕ
ϕC1C
g:RRC2
f(x, y) = g(x)g(y)
xyx6=y f(x, x) = g0(x)
f(x, y) [0 ; 1]
fC1
ϕ:RRf:R2R
f(x, y) = Zy
x
ϕ(t) dt
fC1
f:R2RC1
F(x) = Zx3
2x
f(x+ 1, t) dt
FR
nN
un: (x, y)7→ cos(ny)
nxn
D(x, y)R2un(x, y)
f: (x, y)7→
X
n=1
un(x, y)
D
fDC1
fR2\ {(0,0)}
(0,0)
f(x, y)=(xy)xy
x2+y2(x2+y2) ln(x2+y2)
(x,y)(0,0) 0
f(0,0)
x
f
x R2\ {(0,0)}
f
x (x, y)=2xy2ln(x2+y2) + 2x3y2
x2+y2
1
t(f(t, 0) f(0,0)) = 0
t00
f
x (0,0) f
x (0,0) = 0
f
x (x, y)
(x,y)(0,0) 0
2xy2ln(x2+y2) = 2yxy
x2+y2(x2+y2) ln(x2+y2)
f
x R2
y
f(x, y) = f(y, x)f
y
g:R+R
g(t) = (tsin 1/t t 6= 0
0
gR+f(x, y) = g(x2+y2)f
R2
gC1R
+f
R2\ {(0,0)}
f
x (x, y)=2xsin 1
px2+y2x
px2+y2cos 1
px2+y2
f
y (x, y)=2ysin 1
px2+y2y
px2+y2cos 1
px2+y2
(0,0)
1
t(f(t, 0) f(0,0)) = tsin 1
|t|= O(t)
t00
f
x (0,0) f
y (0,0)
f
x 1
n,0=2
nsin ncos n
n+f
x (0,0)
f
y
fR2\ {(0,0)}
f(x, y)
(x,y)0
r2cos θsin θ
r|cos θ|+|sin θ|0 = f(0,0)
cos θ×sin θ
|cos θ|+|sin θ|
2π
fR2
f
x (0,0) = lim
t0
1
t(f(t, 0) f(0,0)) = 0
x, y > 0
f
x (x, y) = ycos(xy)(x+y)sin(xy)
(x+y)2
f
x (t, t) = 2t2cos(t2)sin(t2)
(2t)2
t0+
1
2
fC1
x=rcos θ y =rsin θ r =px2+y2
(x,y)(0,0) 0
f(x, y) = r2cos θsin θcos(2θ)
(x,y)(0,0) 0
f(0,0) f(0,0) = 0
fC2
R2\ {(0,0)}f
x (x, y) = yx4+ 4x2y2y4
(x2+y2)2
f
x (0,0) = lim
t0
1
t(f(t, 0) f(0,0)) = 0
f
x (x, y)
(x,y)(0,0) 0
f
x R2
f
y
f(x, y) = f(y, x)
fC1R2
2f
yx(0,0) = lim
h0
1
hf
x (0, h)f
x (0,0)=1
2f
x∂y (0,0) = 1
fC2
fC1R2\ {(0,0)}
f
x (x, y) = y3
x2+y22x2y3
(x2+y2)2
f
y (x, y) = 3xy2
x2+y22xy4
(x2+y2)2
1
t(f(t, 0) f(0,0)) = 0
1
t(f(0, t)f(0,0)) = 0,
f
x (0,0) f
y (0,0)
f
x (0,0) = f
y (0,0) = 0.
f
x (x, y)≤ |y|y2
x2+y2+ 2 |y|xy
x2+y22
(x,y)(0,0) 0
f
y (x, y)3|y||xy|
x2+y2+ 2 |y||xy|
x2+y2
y2
x2+y2
(x,y)(0,0) 0.
fC1R2
1
tf
x (0, t)f
x (0,0)= 1 1
1
tf
y (t, 0) f
y (0,0)= 0 0.
2f
x∂y (0,0) 2f
yx (0,0)
2f
x∂y (0,0) = 0 2f
yx(0,0) = 1.
fC2
(x, y)(0,0) x=rcos θ y =rsin θ
r=px2+y20
f(x, y)=2r2(cos2θsin2θ) ln r0
r2ln r0
f(0,0) f(0,0) = 0
fC1R2− {(0,0)}f(x, y) = f(y, x)
x
f
x (x, y) = f
y (y, x)
f
x (0,0) = lim
t0
1
t(f(t, 0) f(0,0)) = 0
f
y (0,0) = 0
(x, y)6= (0,0)
f
x (x, y)=2xln(x2+y2) + 2x(x2y2)
x2+y2
(x, y)(0,0) x=rcos θ y =rsin θ
r=px2+y20
f
x (x, y)=4rln r+ 2r(cos2θsin2θ)0 = f
x (0,0)
f
x (0,0)
f
y
cx,y ]0 ; x2+y2[
F(x, y) = f0(c)
(x, y)(0,0) cx,y 0F(x, y)f0(0)
F(x, y) = F(0,0)+x2+y2
2f00(0)+(x2+y2)ε(x2+y2) = F(0,0)+ϕ(x, y)+o(x, y)
ϕ= 0
F(0,0) dF(0,0) = 0
FC1R2\ {(0,0)}
F
x (x, y) = 2x
x2+y2(f0(x2+y2)F(x, y)) = x(f00(0) + o(1))
(x,y)(0,0) 0
F
y (x, y)
(x,y)(0,0) 0
FC1
ϕ(a, a) = sin a ϕ(x, y)ϕ(a, a)
(x, y)(a, a)x6=y x =y
cos pcos q=2 sin pq
2sin p+q
2
ϕ(x, y) = sinc xy
2sin x+y
2
sinc C
gC1
g(x) = g(y) + Zx
y
g0(t) dt
t=y+u(xy)
g(x) = g(y)+(xy)Z1
0
g0(y+u(xy)) du
f(x, y) = Z1
0
g0(y+u(xy)) du
x6=y x =y
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !