(x, y)→(0,0) x=rcos θ y =rsin θ
r=px2+y2→0
f(x, y)=2r2(cos2θ−sin2θ) ln r→0
r2ln r→0
f(0,0) f(0,0) = 0
fC1R2− {(0,0)}f(x, y) = −f(y, x)
x
∂f
∂x (x, y) = −∂f
∂y (y, x)
∂f
∂x (0,0) = lim
t→0
1
t(f(t, 0) −f(0,0)) = 0
∂f
∂y (0,0) = 0
(x, y)6= (0,0)
∂f
∂x (x, y)=2xln(x2+y2) + 2x(x2−y2)
x2+y2
(x, y)→(0,0) x=rcos θ y =rsin θ
r=px2+y2→0
∂f
∂x (x, y)=4rln r+ 2r(cos2θ−sin2θ)→0 = ∂f
∂x (0,0)
∂f
∂x (0,0)
∂f
∂y
cx,y ∈]0 ; x2+y2[
F(x, y) = f0(c)
(x, y)→(0,0) cx,y →0F(x, y)→f0(0)
F(x, y) = F(0,0)+x2+y2
2f00(0)+(x2+y2)ε(x2+y2) = F(0,0)+ϕ(x, y)+o(x, y)
ϕ= 0
F(0,0) dF(0,0) = 0
FC1R2\ {(0,0)}
∂F
∂x (x, y) = 2x
x2+y2(f0(x2+y2)−F(x, y)) = x(f00(0) + o(1)) −−−−−−−→
(x,y)→(0,0) 0
∂F
∂y (x, y)−−−−−−−→
(x,y)→(0,0) 0
FC1
ϕ(a, a) = −sin a ϕ(x, y)→ϕ(a, a)
(x, y)→(a, a)x6=y x =y
cos p−cos q=−2 sin p−q
2sin p+q
2
ϕ(x, y) = −sinc x−y
2sin x+y
2
sinc C∞
gC1
g(x) = g(y) + Zx
y
g0(t) dt
t=y+u(x−y)
g(x) = g(y)+(x−y)Z1
0
g0(y+u(x−y)) du
f(x, y) = Z1
0
g0(y+u(x−y)) du
x6=y x =y