IME DT 85 72

publicité
EQUIPE
DE
RECHERCHE
ASSOCIEE
AU
C.N.R.S.
DOCUMENT DE TRAVAIL
INSTITUT
DE
MATHEMATIQUES ECONOMIQUES
UNIVERSITE DE DIJON
FACULTE
4,
DE
SCIENCE
BOULEVARD
ECON OMIQUE
GABRIEL
-
ET
21000
DE
GESTION
DIJON
N° 72
Note sur les classes de similitude
Bernadette Mathieu-Nicot
et Michel Prévôt
Janvier 1985
-
1
-
Note sur les classes de similitude.
1. Introduction
1.1. Il est souvent avancé que les pré-ordres flous ne sont pas tous
réductibles, c'est-à-dire décomposables en classes de similitude. En
d'autres termes, les relations de similitude ne seraient pas, en général,
disjointes. ( V o i r , par exemple, Kaufmann [ 1, page 104] . Contrairement
à un résultat bien connu en algèbre ordinaire, selon lequel toute
relation d'équivalence détermine une partition du référentiel, une rela­
tion de similitude (équivalence floue) déterminerait des sous-ensembles
flous qui ne seraient pas nécessairement disjoints.
1.2. L'objet de cette Note est de démontrer que, sous certaines conditions,
les pré-ordres flous sont réductibles.
Cette démonstration est apportée dans le cas où la composition
des relations binaires floues fait appel aux opérateurs max-min. Elle
utilise une propriété importante des pré-ordres flous (voir paragraphe
4.1.2.) qui a été initialement établie par Prévôt [ 2, page 47 J . Elle
est exposée au paragraphe 4.2.4.2.
Enfin, quelques propriétés complémentaires des relations
binaires floues sont présentées.
1.3. Notation. Les symboles soulignés représentent des concepts ordinaires
et les symboles non soulignés des concepts de la théorie des sous-ensembles
flous.
2. Définitions.
2.1. Relation binaire floue sur un ensemble E .
2
Soit un référentiel (non flou) £ et le carré cartésien £ .
2
Une relation binaire floue, notée R, entre les éléments de £ est un
élément de l'ensemble des applications de £
où
^^(x »
y)
9
vers un treillis L :
e$t la fonction caractéristique d'appartenance du couple
(x, y) à la relation binaire floue R.
- 2 -
Z.Z.
Relation binaire floue réciproque.
Etant donné une relation binaire floue R définie sur E2 , il
existe une relation réciproque (ou duale), notée R
-1 , définie sur £ 2,
telle que :
tf(x, y) e E2 ,
R -1
(x. y)
R U, y)
o
P R-1 (y, x) = p R (x, y).
2.3.o-Composition des relations binaires floues.
?
Etant donné deux relations binaires floues sur JE , notées R
et S, la relation o-composée de R et S, notée S o R, est une relation floue
définie sur £
2
telle que :
V U , z) e E2 ,
(S o R) (x, z ) et 3 y e E tel que :
R ( x , y) et S(y, z ) .
La fonction d'appartenance correspondante est :
M (S o r)
z) = max
(*»
y) A
h s
(y,
z) ]
Remarque : Si L. = |o, ij , il suffit d'utiliser le produit matriciel booléen
pour obtenir la fonction d'appartenance de la relation composée non floue.
3. Relations particulières.
3.1. Relation identité.
3.1.1. Définition. La relation identité, notée
2
floue, définie sur Z , telle que :
A = j (x ,y), juA i (x, y) e £ 2 ,
A, est une relation binaire
ma
(x , x) = 1,
**A (x,y) = 0, x f yj
On a évidemment : A = A “-*3.1.2. Proposition : R o A = A o R = R
Démonstration : M R q ^ (x, z) = max [ ;uR U , y ) Aju^y, z) ]
Si y
=
z : P A U , z)
=
1 ;
^ Rq A ( x ,
Si y t z : M a (y, z) = 0 d'oü
MR 0 A
z
)
=
p
R
(x, z)
Ix, z) = juR (x, z)
- 3 -
La définition de l'identité de deux sous-ensembles flous est vérifiée.
3.2. Relation réflexive.
3.2.1. Définition. Une relation R définie sur E2 est réflexive si et seule­
ment s i , V x e £ , ju n U .x) = 1.
3.2.2. Propriétés :
3.2.2.1. A ç
r
.
2
Démonstration : V(x, x) e je , M a ( x , x ) = J“R (x, x) = 1
V U , y) e E2 ,
x f y,
M A Ix, y) = 0 <
Ji R (x, y)
2
V(x, y) e E ,
U,y)
<
*<R tx, y)
Il suffit d'appliquer la définition de l'inclusion.
3. 2 . 2.2. R réflexive
Démonstration : A ç
=»
R
R C
R o R
(3.2.2.1.)
R oA ç R o R
Or, R o A = R ( 3.1.2.)
D'où il vient : R ç R o R.
3.3. Relation transitive
3.3.1. Définition. Une relation R définie sur £
2
O
est transitive si et seu-
lement si, V ( x , y, z) e £ ,
R( x, y) et R( y, z)
=>
R (x, z)
3.3.2. Propriété : Soit R une relation transitive sur
]y e £
tel que R (x, y) et R [ y, z) =>
R o RC
D'après
2
, V (x, z)e
?
E1 ,
R (x, z)
R
la définition de la o - composition des relations,
il vient immédiatement :
2
V IX, z) e E , max[/iR (x, y) a
^ r (y, z) ]
^
ju R (x, z)
- 4 -
3.4. Relation symétrique.
3.4.1. Définition : Une relation R définie sur £
2
seulement si, V U , y ) e £ ,
m
1
est symétrique si et
r(x > y) = ^ r ^ » *)•
3.4.2. Propriété : Une relation R est symétrique si et seulement si R = R"*,
puisque
m r
(x,
y) = ju R -1 (y,x) et la définition (2.2.) est vérifiée.
3.5. Relation antisymétrique.
2
3.5.1. Définition : Une relation R définie sur JE est antisymetrique si et
seulement si,
V (x,
y)
e£^,
R ( x , y) et R (y, x)
3.5.2. Propriété : V U , y)
=>
x = y
e £2>
R(x, y) et R (y, x)
=*
R ( x , y) et R-1 (x, y)
x = y
=► x = y
=* (x, y) e A
D'où il suit : A ç R n r "^
4. Structures des relations binaires f l o u e s .
4.1. Relation de pré-ordre f l o u .
4.1.1. Définition. Une relation binaire floue R sur £
2
est une relation de
pré-ordre flou si seulement si elle est réflexive et transitive.
V x e E, v R (x, x) = 1
V (x , y, z) e JE , max [ ju R lx. y) A
4.1.2. Propriété : R réflexive
R transitive
R (y» z) ] <
u R (x, z)
=*•
R Ç R o R (3.2.2.2.)
=*
R
o R £ R (3.3.2)
Par conséquent, R o R = R
et n R (x, z) = max [ V R (x, y ) a M r (y, z) ]
4.2. Relation de similitude.
4.2.1. Définition : Une relation binaire floue R sur £
2
est une relation
de similitude si et seulement si R est un pré-ordre symétrique.
4.2.2. Propriété : On a immédiatement, en utilisant 3.2.2.1. et 3.4.k!. :
A ç r o R = R = R"1
et l'on retrouve la propriété 4.1.2.
- 5 -
4.2.3. Proposition : Etant donné une relation de similitude R définie sur
2
E_ , R peut être décomposée sous la forme
: R = m a x t ^ A R ] , a e L, où R
oi
a
et
est le sous-ensemble ordinaire de niveau a :
- a = (^X ’
Alors, IR
’ ^X ’
6 - 2 ’^ R ^x ’
>
]
est une relation d'équivalence. De plus, on a :
°
tl'>CtZ
^
— al C
—
a2
Démonstration : Il faut d'abord démontrer que R a est une relation d'équi­
valence. Cette relation est :
- réflexive : V x e
Par définition, (x, x) e
£, m r (x, x) = 1 > oc
et
est réflexive.
- symétrique : V ( x , y ) e
K
U , y) > a
Ra
> a(d'après 4.2.1.) et [y, x)
(y» x)
- transitive : V (x, y) e R
K
y) >
K
R (y, Z) >
¿»R (x, z) = max [¿u
d'où il vient : M D (x, z) ^ a = » U , z)
OC
= ^ m d (x »
0i
V (y, Z) e R a
Par la propriété 4.1.2.,
e R .
a
<X
(x , y) a ^ r (y, z) |
e R
— OL
Ainsi, R est une relation d'équivalence.
-a.
De plus, si a 1 >
« 2, V
(x, y) e R a
, ju
1
U > y) > «
■
* Mo
"
“I
, e t (x, y) € R
(x, y) >
-“i
.
2
Remarque : D'après le théorème 4.2.3. R ^ constitue une famille d'ensembles
emboîtés les uns dans les autres, cela conduit tout naturellement soit dans le
cas discret à définir une hiérarchie sur le référentiel £
soit dans le
cas continu à définir un homéomorphisme entre £ et R.
4.2.4. Hiérarchie sur E .
4.2.4.1. Définition : Soit £ un ensemble fini à n éléments, une ^artiti^n
de £ est un ensemble de parties de £ disjointes deux à deux, dont la
réunion est E.
- 6 -
Ces parties sont nommées classes de la partition.
Construire une classification sur l'ensemble £ équivaut à
définir une partition de cet ensemble.
Il
est facile de voir qu'à toute partition est associée une
relation d'équivalence P et réciproquement. L'ensemble des classes est
l’
ensemble quotient E/P
en notant P la relation"x appartient à la même
classe que y."
Si P(E) est l'ensemble des partitions de £, on dit qu'une
partition P est plus fine qu'une partition P' si x P y =* x P' y.
Cette relation permet de définir un ordre partiel sur P(E) que
1'on note P < P' .
PQE) a alors une structure de treillis.
4.2.4.2. Chaîne de partitions
Le plus petit élément de P(E) est la partition discrète dont
chaque classe ne contient qu'un élément de E. Son plus grand élément ne
comporte qu'une classe E.
On construit souvent pour définir une classification une suite
de partitions emboîtées les unes dans les autres et qui découpent £ de
façon plus ou moins fine ; cette pratique amène à définir des chaînes
Une chaîne du treillis P(E) est un sous-ensemble totalement
ordonné de P ( E ) .
C = ( pr ..pk )
avec
Px <
P2 ... <
Pk
p .e
P(E)
Ainsi d'après le théorème 4.2.3., il est possible de définir
une chaîne sur P(E) puisque les R_
sont des sous-ensembles
emboîtés, il
est possible cependant de préciser cette notion.
4.2.4.3. Ultramétrique associée à R^a
Une application S de £
2
dans R
S(x, y) = S(y, x)
S ( x , y) = 0
S(x, z ) <
x = y
S ( x , y) + S(y, z)
+
est une métrique si
- 7 -
S est une ultramétrique si elle vérifie de plus
S(x, z) < max [ S (x, y ) , S (y, z) ]
Considérons la chaîne C = ( Pq, P ^ ,...,P ^ ) où Pq est la parti­
tion discrète, P^ la partition définie par
par u ^ , les a
et P.. la partition définie
étant rangés par valeurs décroissantes, par le théorème
4.2.3. nous obtenons une famille d'ensembles emboîtés donc une chaîne
sur P ( E ) .
Munissons E^ de la fonction 6
( x , y ) ------- ^ 5 (x,y) est le plus petit i tel que x P. y
S est une ultramétrique
S U , y) = S (y, x)
S(x, y) = 0 <*■ x = y
S U . z) <
max [ S U . y ) . S(y, z) ] en effet S(x, y) = i et S(y, z)=j
cela veut dire que s, y, z se retrouvent dans la même classe dans la par­
tition P^ avec k = max (i, j) donc S(x, z) <
k.
4.2.5. Cas continu : il suffit d'utiliser le théorème 4.2.3.
4.3. Relation d'ordre fl ou .
4.3.1. Définition : Une relation binaire floue R sur £
2
est une relation
d'ordre flou si et seulement si R est un pré-ordre antisymétrique.
4.3.2. Propriété : Une relation d'ordre flou induit un pré-ordre flou sur
le référentiel
:
x < y o
i i R U, y) <
/ ^ y . x)
Démonstration : La relation R est :
- réflexive : V x e £,
- transitive :
¿tR (x, y) A
x < y
m r
U, x )<
m r (x
, x)
=> juR VX, y) <
x)
y < z -* M R (y, z) <
//R (z, y)
M R (y. z) <
juR (y, x) a
juR (x, z) ^
juR ( z . x)
jir (z
=>
x <
, y)
z
=► x <
x
Références
[ 1 ] KAUFMANN (A.) : Introduction à la théorie des sous-ensembles flo us .
Tome 1, Paris, Masson et Cie, 1973.
[ 2 ] PREVOT (M.) : Sous-ensembles flous. Une approche théorique.
Dijon, Librairie de l'Université, 197/.
Téléchargement