2) x4+ 1
Solution: The roots of x4+ 1 are eπi/4,e3πi/4,e5πi/4, and e7πi/4. Therefore E=Q(eπi/4), and
[E:Q] = 4 (since x4+1 is irreducible over Q, for example by looking at f(x+1) and using Eisenstein).
3) x4−4x2+ 2
Solution: The roots are t1=p2 + √2,t2=p2−√2,t3=−t1and t4=−t2. Thus E=Q(t1, t2).
However we claim that t2∈Q(t1), and hence E=Q(t1). To see this, note that t1t2=√4−2 = √2,
and √2 = t2
1−2. Therefore t2=t1−2/t1∈Q(t1). Thus [E:Q]=4(because x4−4x2+ 2 is
irreducible, and is the minimal polynomial for t1).
4) (x2−2)(x2+ 3)
Solution: The roots are ±√2,±√3i. Thus E=Q(√2,√3i). Furthermore,
[Q(√2,√3i) : Q]=[Q(√2,√3i) : Q(√2)][Q(√2) : Q] = 2 ×2 = 4.
Here we have computed [Q(√2,√3i) : Q(√2)] by noting that x2+3 is irreducible over Q(√2) because
the roots are not real.
5) x3−5x2+ 9x−5
Solution: We can’t as easily write down the roots in this case. However note that the polynomial
is not irreducible, because of the root x= 1. After factorising we have f(x)=(x−1)(x2−4x+ 5).
The roots of the quadratic are 2±i. Thus
E=Q(1,2 + i, 2−i) = Q(i),
and so [E:Q] = 2.
Exercice 4 Dans chacun des cas suivants, déterminer un polynôme ayant le corps donné comme corps
de décomposition :
1) Q(√2)
Solution: There are infinitely many possible polynomials : For example f(x) = x2−2, or f(x) =
(x2−2)(x+ 1).
2) Q(3
√2, e2πi/3)
Solution: For example, f(x) = x3−2.
3) Q(√2 + √3)
Solution: Let t=√2+√3. Then (t−√2)2= 3, and so t2−2√2t−1=0. Thus 8t2= (t2−1)2=t4−
2t2+1, and so t4−10t2= 1 = 0. So tis a root of the polynomial f(x) = x4−10x2+1. The other roots
are √2−√3,−√2+√3, and −√2−√3. Thus the splitting field of f(x)is E=Q(√2+√3,√2−√3).
However √2−√3 = −1/(√2 + √3) ∈Q(√2 + √3), and thus E=Q(√2 + √3).
Remark : Sometimes we need to do some clever simplifications to see splitting fields in their simplest
formulations. The above is a good example : Suppose that we are asked to compute the splitting field
of f(x) = x4−10x2+ 1 (that is, working back the other direction). We’d go about finding the roots,
t2= 5 ±√25 −1=5±2√6. Thus t=±p5±2√6. Hang on, these don’t look like the roots from
the paragraph above ! We need to simplify. Since 5±2√6 = (√2±√3)2, we have t=±(√2±√3),
and so E=Q(t1, t2,−t1,−t2)where t1=√2 + √3and √2−√3. Then, as above, since t2=−1/t1
we have E=Q(t1).
Remark : Another possible polynomial is f(x)=(x2−2)(x2−3). This has splitting field E=
Q(√2,√3), and as an exercise (see last week) you can check that Q(√2 + √3) = Q(√2,√3).
Exercice 5 Montrer que l’ensemble des complexes algébriques sur Qest la clôture algébrique de Q.
Solution: Rappelons la définition de clôture algébrique de Q. C’est la plus petite extension algébrique
Lde Qdans laquelle tout polynôme à coefficient dans Lse factorise complètement. En particulier, tout
polynôme à coefficients dans Qdoit se factoriser complètement, on voit que donc l’ensemble des complexes
algébriques Msur Qest inclu dans L. Si on montre que Mest algébriquement clos, on aura le résultat.
Soit un polynôme P=PaiXide degré nà coefficients dans M. Le polynôme est en fait à coefficients
dans Q(a0, . . . , an). Or cette extension est de degré fini puisque
[Q(a0, . . . , an) : Q]≤Y[Q(ai),Q].
2