E=R2F={(x, y)∈E:x=y}
(1,0) + (0,1) = (1,1) ∈F,
(1,0) 6∈ F(0,1) 6∈ F
0v1+v2+ (−1)v2= 0,0v1+ 0v2+v4= 0.
421
032
001
v3v2v1
E=R2u= (1,0), v = (0,1), w = (1,1) (u, v)
(u, w) (v, w)
u+v−w= 0 ⇒(u, v, w).
E=R3F= Vect(e1)G= Vect(e2)H= Vect(e1, e2)
F+H=H=G+H, F 6=G.
(f1, ..., fn)F
g1, ..., gmG h1, ..., hpH
f1, ..., fn, h1, ..., hpg1, ..., gm, h1, ..., hpE
n+p= dim(E) = m+p⇒n=m.
E
∀i∈J1, nK, u(fi) = gi,
∀j∈J1, pK, u(hj) = hj.
u E u
F G u F G
E=R2F= Vect(e1)G= Vect(e2)
e1, e2∈F∪G, e1+e26∈ F∪G.
x, y ∈Ti∈I(Ei)λ∈K
∀i∈I, x, y ∈Ei⇒x+λy ∈Ei,
x+λy ∈Ti∈I(Ei).
u E
ker(u) = {0},Im(u) = E,
ker(u)⊕Im(u) = E.